Hackers
Delight

Henry S. Warren, Jr.

11112 = 11100001

rof

31
pop(x) = - 9 (x Z% i)

=
George Boole r

1815 - 1864
nm—2Mp + 208 2T+, +20%,

% = 001010101 ...

x@y=(x|»-(x&y)
xty=(x|y)+x&y)
-y =x+y+1
Num factors of 2 in x =
I’r-l = _I___-’.-J = x+1 Iogz{x&{-\—]_]. x20

2241 = 6416700417
24 | = 274177 - 6780421310721

LA = un lal+lb] < Latb] < LajsLb]+]

pomte 5 [£ [eoratztist]]

. Table of
Contents

Hacker's Delight
By Henry S. Warren,

Publisher: Addison Wesley
Pub Date: July 17, 2002
ISBN: 0-201-91465-4
Pages: 320
Ripped by Caudex 2003

"Thisisthefirst book that promises to tell the deep, dark secrets of computer
arithmetic, and it deliversin spades. It contains every trick | knew plus many, many
more. A godsend for library developers, compiler writers, and lovers of elegant hacks,
it deserves a spot on your shelf right next to Knuth.”-Josh Bloch

"When | first saw thetitle, | figured that the book must be either a cookbook for
breaking into computers (unlikely) or some sort of compendium of little programming
tricks. It's the latter, but it's thorough, almost encyclopedic, in its coverage." -Guy
Steele

These are the timesaving techniques relished by computer hackers-those devoted and
persistent code developers who seek elegant and efficient ways to build better
software. The truth is that much of the computer programmer's job involves a healthy
mix of arithmetic and logic. In Hacker's Delight, veteran programmer Hank Warren
shares the tricks he has collected from his considerable experience in the worlds of
application and system programming. Most of these techniques are eminently
practical, but afew are included just because they are interesting and unexpected. The
resulting work is an irresistible collection that will help even the most seasoned
programmers better their craft.

Topics covered include:
e A broad collection of useful programming tricks
e Small algorithms for common tasks
« Power-of-2 boundaries and bounds checking
* Rearranging bits and bytes
* Integer division and division by constants

« Some elementary functions on integers

http:// /?x=1&mode=toc&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4&open=false&title=New%20This%20Week&srchText=&code=&h=&m=&l=&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=toc&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4&open=false&title=New%20This%20Week&srchText=&code=&h=&m=&l=&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http://www.informit.com/safari/author_bio.asp?ISBN=0201914654

« Gray code
* Hilbert's space-filling curve
 And even formulas for prime numbersl!

This book is for anyone who wants to create efficient code. Hacker's Delight will help
you learn to program at a higher level-well beyond what is generally taught in schools
and training courses-and will advance you substantially further than is possible
through ordinary self-study aone.

Copyright

Many of the designations used by manufacturers and sellersto distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of atrademark
claim, the designations have been printed with initial capital letters or in al capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3149

corpsal es@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
(317) 581-3793

i nternati onal @pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Catal oging-in-Publication Data
Warren, Henry S.

Hacker'sdelight / Henry S. Warren, Jr.

p. cm.

Includes bibliographical references and index.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/

1. Computer programming. |. Title.

QA76.6 .W375 2002

005.1—dc21

2002066501

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from thiswork, please submit awritten request to:
Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

123456789 10—MA—0605040302

First printing, July 2002
Dedication

To Joseph W. Gauld, my high school algebra teacher, for sparking in me a delight in the simple things in
mathematics.

Foreword

When | first got asummer job at MIT's Project MAC almost 30 years ago, | was delighted to be able to work
with the DEC PDP-10 computer, which was more fun to program in assembly language than any other
computer, bar none, because of itsrich yet tractable set of instructions for performing bit tests, bit masking,
field manipulation, and operations on integers. Though the PDP-10 has not been manufactured for quite some
years, there remains a thriving cult of enthusiasts who keep old PDP-10 hardware running and who run old
PDP-10 software—entire operating systems and their applications—by using personal computers to ssmulate
the PDP-10 instruction set. They even write new software; thereis now at least one Web site whose pages are
served up by asimulated PDP-10. (Come on, stop laughing—it's no sillier than keeping antique cars running.)

| also enjoyed, in that summer of 1972, reading a brand-new MIT research memo called HAKMEM, abizarre
[1]
and eclectic potpourri of technical trivia. The subject matter ranged from electrical circuits to number theory,
but what intrigued me most was its small catalog of ingenious little programming tricks. Each such gem would
typically describe some plausible yet unusual operation on integers or bit strings (such as counting the 1-bitsin
aword) that could easily be programmed using either alongish fixed sequence of machine instructions or a
loop, and then show how the same thing might be done much more cleverly, using just four or three or two
carefully chosen instructions whose interactions are not at all obvious until explained or fathomed. For me,
devouring these little programming nuggets was like eating peanuts, or rather bonbons—I just couldn't stop—
and there was a certain richness to them, a certain intellectual depth, elegance, even poetry.

[1] Why "HAKMEM"? Short for "hacks memao"; one 36-bit PDP-10 word could hold six 6-bit characters, so a lot of the
names PDP-10 hackers worked with were limited to six characters. We were used to glancing at a six-character
abbreviated name and instantly decoding the contractions. So haming the memo "HAKMEM" made sense at the time
—at least to the hackers.

"Surely," | thought, "there must be more of these," and indeed over the years | collected, and in some cases
discovered, afew more. "There ought to be a book of them."

| was genuinely thrilled when | saw Hank Warren's manuscript. He has systematically collected these little
programming tricks, organized them thematically, and explained them clearly. While some of them may be
described in terms of machine instructions, thisis not a book only for assembly language programmers. The
subject matter is basic structural relationships among integers and bit strings in a computer and efficient
techniques for performing useful operations on them.

These techniques are just as useful in the C or Java programming languages as they are in assembly language.

Many books on algorithms and data structures teach complicated techniques for sorting and searching, for
maintaining hash tables and binary trees, for dealing with records and pointers. They overlook what can be
done with very tiny pieces of data—bits and arrays of bits. It is amazing what can be done with just binary
addition and subtraction and maybe some bitwise operations; the fact that the carry chain allows asingle bit to
affect all the bits to its left makes addition a peculiarly powerful data manipulation operation in ways that are

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/pref01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#pref01footnote01#pref01footnote01

not widely appreciated.

Y es, there ought to be a book about these techniques. Now it isin your hands, and it'sterrific. If you write
optimizing compilers or high-performance code, you must read this book. Y ou otherwise might not use this bag
of tricks every single day—but if you find yourself stuck in some situation where you apparently need to loop
over the bitsin aword, or to perform some operation on integers and it just seems harder to code than it ought,
or you really need the inner loop of some integer or bit-fiddly computation to run twice as fast, then thisisthe
place to look. Or maybe you'll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts
April 2002

Preface

Caveat Emptor: The cost of software maintenance increases with the square of the programmer's creativity.
—First Law of Programmer Creativity, Robert D. Bliss, 1992

Thisisacollection of small programming tricks that | have come across over many years. Most of them will
work only on computers that represent integers in two's-complement form. Although a 32-bit machineis
assumed when the register length is relevant, most of the tricks are easily adapted to machines with other
register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler optimization techniques.
Rather, it deals with small tricks that usually involve individual computer words or instructions, such as
counting the number of 1-bitsin aword. Such tricks often use a mixture of arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so they cannot occur. C,
Fortran, and even Java programs run in this environment, but Pascal and ADA users beware!

The presentation isinformal. Proofs are given only when the algorithm is not obvious, and sometimes not even
then. The methods use computer arithmetic, "floor" functions, mixtures of arithmetic and logical operations,
and so on. Proofs in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have been executed. Thisiswhy they
are given in area programming language, even though, like every computer language, it has some ugly
features. C is used for the high-level language because it iswidely known, it allows the straightforward mixture
of integer and bit-string operations, and C compilers that produce high-quality object code are available.

Occasionally, machine language is used. It employs a three-address format, mainly for ease of readability. The
assembly language used is that of afictitious machine that is representative of today's RISC computers.

Branch-free code is favored. Thisis because on many computers, branches slow down instruction fetching and
inhibit executing instructions in parallel. Another problem with branchesis that they may inhibit compiler
optimizations such as instruction scheduling, commoning, and register allocation. That is, the compiler may be
more effective at these optimizations with a program that consists of afew large basic blocks rather than many
small ones.

The code sequences also tend to favor small immediate values, comparisons to zero (rather than to some other
number), and instruction-level parallelism. Although much of the code would become more concise by using
table lookups (from memory), thisis not often mentioned. Thisis because loads are becoming more expensive
relative to arithmetic instructions, and the table lookup methods are often not very interesting (although they
are often practical). But there are exceptional cases.

Finally, I should mention that the term "hacker” in the title is meant in the original sense of an aficionado of
computers—someone who enjoys making computers do new things, or do old thingsin a new and clever way.
The hacker isusually quite good at his craft, but may very well not be a professional computer programmer or
designer. The hacker's work may be useful or may be just a game. As an example of the latter, more than one

[1]
determined hacker has written a program which, when executed, writes out an exact copy of itself. Thisis
the sense in which we use the term "hacker." If you're looking for tips on how to break into someone else's
computer, you won't find them here.

[1] The shortest such program written in C, known to the present author, is by Vlad Taeerov and Rashit Fakhreyev and
is 64 characters in length:

mai n(a){printf(a,34,a="main(a){printf(a, 34, a=%%%, 34);}",34);}

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/pref02&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#pref02footnote01#pref02footnote01

Acknowledgments

First, | want to thank Bruce Shriver and Dennis Allison for encouraging me to publish this book. | am indebted
to many colleagues at IBM, several of whom are cited in the Bibliography. But one deserves special mention:
Martin E. Hopkins, whom | think of as"Mr. Compiler" at IBM, has been relentless in his drive to make every
cycle count, and I'm sure some of his spirit has rubbed off on me. Addison-Wesley's reviewers have improved
the book immensely. Most of their names are unknown to me, but the review by one whose name | did learn
was truly outstanding: Guy L. Steele, Jr., completed a 50-page review that included new subject areas to
address, such as hit shuffling and unshuffling, the sheep and goats operation, and many others that will have to

wait for a second edition (®). He suggested algorithms that beat the ones | used. He was extremely thorough.
For example, | had erroneously written that the hexadecimal number AAAAAAAA factorsas2 -3 - 17 - 257 -
65537; Guy pointed out that the 3 should be a 5. He suggested improvements to style and did not shirk from
mentioning minutiae. Wherever you see "parallel prefix" in this book, the material is due to Guy.

H. S. Warren, Jr.
Y orktown, New Y ork
February 2002

Chapter 1. Introduction

Notation

Instruction Set and Execution Time Model

http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

1-1 Notation

This book distinguishes between mathematical expressions of ordinary arithmetic and those that describe the
operation of acomputer. In "computer arithmetic," operands are bit strings, or bit vectors, of some definite
fixed length. Expressions in computer arithmetic are similar to those of ordinary arithmetic, but the variables
denote the contents of computer registers. The value of a computer arithmetic expression is ssmply a string of
bits with no particular interpretation. An operator, however, interprets its operands in some particular way. For
example, a comparison operator might interpret its operands as signed binary integers or as unsigned binary
integers, our computer arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in computer arithmetic, the
results of addition, subtraction, and multiplication are reduced modulo 2", where n is the word size of the
machine. Another difference is that computer arithmetic includes alarge number of operations. In addition to
the four basic arithmetic operations, computer arithmetic includes logical and, exclusive or, compare, shift |eft,
and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are represented in two's-complement
form.

Expressions of computer arithmetic are written similarly to those of ordinary arithmetic, except that the
variables that denote the contents of computer registers are in bold-face type. This convention is commonly
used in vector algebra. We regard a computer word as a vector of single bits. Constants also appear in bold-face
type when they denote the contents of a computer register. (This has no analogy with vector algebra becausein
vector algebrathe only way to write a constant is to display the vector's components.) When a constant denotes
part of an instruction, such as the immediate field of a shift instruction, light-face typeis used.

If an operator such as"+" has bold-face operands, then that operator denotes the computer's addition operation
("vector addition"). If the operands are light-faced, then the operator denotes the ordinary scalar arithmetic
operation. We use alight-faced variable x to denote the arithmetic value of a bold-faced variable x under an
interpretation (signed or unsigned) that should be clear from the context. Thus, if x = 0x80000000 and y =
0x80000000, then, under signed integer interpretation, x =y =-231, x + y=-232 and x + y = 0. Here,
0x80000000 is hexadecimal notation for a bit string consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit 0. The terms "bits,"
"nibbles,” "bytes," "halfwords," "words," and "doublewords" refer to lengths of 1, 4, 8, 16, 32, and 64 bits,
respectively.

Short and simple sections of code are written in computer algebra, using its assignment operator (left arrow)
and occasionally an if statement. In thisrole, computer algebrais serving as little more than a machine-
independent way of writing assembly language code.

Longer or more complex computer programs are written in the C** programming language. None of the object-

oriented features of C** are used; the programs are basically in C with commentsin C** style. When the
distinction is unimportant, the language is referred to simply as"C."

A complete description of C would be out of place in this book, but Table 1-1 contains a brief summary of most
of the elements of C [H& §] that are used herein. Thisis provided for the benefit of the reader who is familiar

with some procedural programming language but not with C. Table 1-1 also shows the operators of our

computer-algebraic arithmetic language. Operators are listed from highest precedence (tightest binding) to
lowest. In the Precedence column, L means |eft-associative; that is,

a*h+*c=(a*h)*c

and R means right-associative. Our computer-algebraic notation follows C in precedence and associativity.

In addition to the notations described in Table 1-1, those of Boolean algebra and of standard mathematics are
used, with explanations where necessary.

Table 1-1. Expressions of C and Computer Algebra

Precedence C Computer Algebra Description
0x... 0x..., Ob... Hexadecimal, binary constants
16 al K] Selecting the kth component
16 Xgr X1, oee Different variables, or bit selection (clarified in text)
16 f(x,...) f(x, ...) Function evaluation
16 abs(x) Absolute value (but abs(-231) = -231)
16 nabs(x) Negative of the absolute value
15 X++, X-- Postincrement, decrement
14 ++X, --X Preincrement, decrement

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table01#ch01table01
http:// /?xmlid=0-201-91465-4/biblio#bib32
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table01#ch01table01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table01#ch01table01

14 (type name) X Type conversion

14R xkK X to the kth power

14 ~X X, X Bitwise not (one's-complement)

14 F'X Logical not (if x =0then 1 else 0)

14 - X -X Arithmetic negation

13L X*y X *y Multiplication, modulo word size

13 L X/'y X +y Signed integer division

13L X!y x Ly, Unsigned integer division

13L X %y rem(x, y) Remainder (may be negative), of (x +y) signed
arguments

3L Xy rem(x, y) Remainder of ** + ¥ unsigned arguments

mod(X, y) x reduced modulo y to the interval [0, abs(y) - 1];

signed arguments

12L X +y, X-Y K+yx-y Addition, subtraction

11L X << Y, X 2>V |y pox oy Shift left, right with O-fill ("logical” shifts)

1L X >>Yy X » Sh_ift right with sign-fill ("arithmetic" or "algebraic"
shift)

1L Rotate shift |eft, right

it it
X PN Y

10L X <Yy, X <=Y, x<y,x':—:y, Signed comparison
X >y, X >=y oy x 2y,
10L X <Yy, X <=Y, .r-’i:_p,r%_v,_, Unsigned comparison
XY, X ==y XmpXxEy
oL X ==y, Xx!=y x=y,x¢y Equality, inequality
8L X &Yy X & Y Bitwise and
7L X Ny x$y Bitwise exclusive or
7L x =y Bitwise equivalence (=(x By))
6L X [y X |y Bitwise or
5L X && Y IEE}' gonditional and (if x=0then O elseif y=0then 0
sel)
4L x 1y x|y Conditional or (if x =0 then 1 elseif y =0 then 1
else 0)
3L x|y Concatenation
2R X =Y X =y Assignment

Our computer algebra uses other functions, in addition to "abs," "rem," and so on. These are defined where
introduced.

In C, the expression X <y < zZ meansto evaluate X <y to a0/1-valued result, and then compare that result to
Z. In computer algebra, the expressonx <y<zmeans (X <y) & (y < 2).

C hasthree loop control statements: whi | €, do, andf or . Thewhi | e statement iswritten:

whi | e (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control returnsto evaluate
expression again. If expression is false (0), the while-loop terminates.

The do statement is similar, except the test is at the bottom of the loop. It is written:
do statement whi | e (expression)

First, statement is executed, and then expression is evaluated. If true, the process is repeated, and if false, the
loop terminates.

Thef or statement iswritten:
for (e ey e3) statement

First, e;, usually an assignment statement, is executed. Then e,, usually a comparison, is evaluated. If false, the
for-loop terminates. If true, statement is executed. Finally, e, usually an assignment statement, is executed,
and control returnsto evaluate e, again. Thus, the familiar "doi = 1 to n" iswritten:

for (1 = 1; i <= n; |++)

(Thisisone of the few contexts in which we use the postincrement operator.)

1-2 Instruction Set and Execution Time Model

To permit arough comparison of algorithms, we imagine them being coded for a machine with an instruction
set similar to that of today's general purpose RISC computers, such as the Compaqg Alpha, the SGI MIPS, and
the IBM RS/6000. The machine is three-address and has afairly large number of general purpose registers—
that is, 16 or more. Unless otherwise specified, the registers are 32 bits long. General register O contains a
permanent O, and the others can be used uniformly for any purpose.

In the interest of simplicity there are no "special purpose” registers, such as a condition register or aregister to
hold status bits, such as"overflow." No floating-point operations are described, because that is beyond the
scope of this book.

We recognize two varieties of RISC: a"basic RISC," having the instructions shown in Table 1-2, and a "full
RISC," having al the instructions of the basic RISC plus those shown in Table 1-3.

Table 1-2. Basic RISC Instruction Set

Opcode M nemonic Operands Description

add, sub, mul, div, divu, RT, RA, RB |RT «=RA op RB, whereop isadd,

rem renu subtract, multiply, divide signed, divide
unsigned, remainder signed, or remainder
unsigned.

addi, mull RT, RA, | RT +=RA op | ,whereop isadd or
multiply, and | isa 16-bit signed immediate
value.

addi s RT, RA, | RT+RA + (I || 0x0000).

and, or, Xxor RT, RA, RB |RT «+=RA op RB, whereop is bitwise and,
or, or exclusive or.

andi, ori, Xxorl RT, RA, U |Asabove, except the last operand is a 16-bit
unsigned immediate value.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table02#ch01table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table03#ch01table03

beq, bne, blt, ble, bgt, bge [RT.Target g targetif RT = 0, or if RT 20, or if
RT <0, or if RT <0, or if RT >0, or if RT
20 (signed integer interpretation of RT).

bt, Dbf RT, t ar get |Branch trueffalse; same asbne/beq resp.

cnpeqg, cnpne, cnplt, cnple, RT, RA, RB |RT gets the result of comparing RA with RB; 0
cnpgt, cnpge, cnpltu, cnpleu, if falseand 1 if true. Mnemonics denote
cnpgt u, cnpgeu compare for equality, inequality, lessthan, and
so on, as for the branch instructions, and in
addition, the suffix "u" denotes an unsigned

comparison.
cnpi eq, cnpine, cnpilt, RT, RA, | Like cnpeq, and so on, except the second
cnpil e, cnpigt, cnpige comparand is a 16-bit signed immediate value.
cnpi equ, cnpi neu, cnpi | tu, RT, RA, I'u |Likecnpl t u, and so on, except the second
cnpi | eu, cnpi gtu, cnpigeu comparand is a 16-bit unsigned immediate
value.
| dbu, | dh, [|dhu, |dw RT, d(RA) |Load an unsigned byte, signed halfword,

unsigned halfword, or word into RT from
memory at location RA + d, whered isa16-
bit signed immediate value.

mul hs, mul hu RIT, RA, RB |RT gets the high-order 32 bits of the product of
RA and RB; signed and unsigned.

not RT, RA RT «=bitwise one's-complement of RA.

shl, shr, shrs RT, RA, RB |RT +—RA shifted l€ft or right by the amount
given in the rightmost six bits of RB; O-fill
except for shr s, which issign-fill. (The shift
amount is treated modulo 64.)

shli, shri, shrsi RT, RA, I U |RT +=RA shifted |eft or right by the amount
given in the 5-bit immediate field.

stb, sth, stw RS, d(RA) |Store abyte, hafword, or word, from RS into
memory at location RA + d, whered isa 16-
bit signed immediate value.

In these brief instruction descriptions, RA and RB appearing as source operands really means the contents of
those registers.

A real machine would have branch and link (for subroutine calls), branch to the address contained in aregister
(for subroutine returns and "switches"), and possibly some instructions for dealing with specia purpose
registers. It would, of course, have a number of privileged instructions and instructions for calling on supervisor
services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are identified in Table 1-3. These are
discussed in later chapters.

Table 1-3. Additional Instructions for the "Full RISC"

Opcode Mnemonic Operands Description

abs, nabs RT, RA RT gets the absolute value, or the negative of
the absolute value, of RA.

andc, eqv, nand, nor, orc RIT, RA, RB |Bitwise and with complement (of RB),
equivalence, negative and, negative or, and or
with complement.

extr RT, RA, |, L |Extract bits| through | +L- 1 of RA, and
place them right-adjusted in RT, with O-fill.

extrs RT, RA, I, L |Likeext r, but sign-fill.

i ns RT, RA, I, L |Insert bits 0 through L- 1 of RA into bits |
through | +L- 1 of RT.

nl z RT, RA RT gets the number of leading O'sin RA (0 to
32).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table03#ch01table03

pop RT, RA RT gets the number of 1-bitsin RA (0 to 32).

| db RI, d(RA) |Load asigned byteinto RT from memory at
location RA + d, whered isa16-bit signed
immediate value.

moveq, novne, novlt, novle, RERARB o7 «—RBIif RA= 0, or if RA 70, and s0 on,

movgt, novge else RT isunchanged.

shlr, shrr RT, RA, RB |RT +=RA rotate-shifted Ieft or right by the
amount given in the rightmost five bits of RB.

shlri, shrri RT, RA, | u |RT «=RA rotate-shifted left or right by the
amount given in the 5-bit immediate field.

trpeq, trpne, trplt, trple, RA, RB Trap (interrupt) if RA=RB, or RA?’-'RB,

trpgt, trpge, trpltu, trpleu, and so on.

trpgtu, trpgeu

trpieq, trpine, trpilt, RA, | Liket r peq, and so on, except the second

trpile, trpigt, trpige comparand is a 16-bit signed immediate value.

trpigtu, trpigeutrpiequ, RA, l'u Liket r pl t u, and so on, except the second

trpineu, trpiltu, trpileu, comparand is a 16-bit unsigned immediate
value.

It is convenient to provide the machine's assembler with afew "extended mnemonics.” These are like macros
whose expansion is usually a single instruction. Some possibilities are shown in Table 1-4.

Table 1-4. Extended Mnemonics

Extended M nemonic

Expansion

Description

b target

peq RO, target

Unconditional branch.

1 RT, 1

See text

Load immediate, -231 S| <232

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch01lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch01table04#ch01table04

mov RT, RA ori RI, RA 0O Move register RAto RT.

neg RT, RA sub RT, RO, RA Negate (two's-complement).

subl RT, RA, | addi RT, RA, -| Subtract immediate (| 7=- 215),

The load immediate instruction expands into one or two instructions, as required by the immediate value |. For

example, if O <| < 216, an or immediate (or i) from RO can be used. If -215 < <0, an add immediate
(addi) from RO can be used. If the rightmost 16 bits of | are 0, add immediate shifted (addi s) can be used.
Otherwise, two instructions are required, such asaddi s followed by or | . (Alternatively, in the last case a

load from memory could be used, but for execution time and space estimates we assume that two elementary
arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC, and which belong in the full RISC isvery much a
matter of judgment. Quite possibly, divide unsigned and the remainder instructions should be moved to the full
RISC category. Shift right signed is another suspicious instruction, given its low frequency of usein the SPEC
benchmarks. The troubleis, in C it is easy to accidentally use these instructions, by doing a division with
unsigned operands when they could just as well be signed, and by doing a shift right with a signed quantity

(i nt) that could just as well be unsigned. Incidentally, shift right signed (or shift right arithmetic, asit is often

called) does not do adivision of asigned integer by a power of 2; you need to add 1 to the result if the dividend
is negative and any nonzero bits are shifted out.

The distinction between basic and full RISC involves many other such questionable judgments, but we won't
dwell on them.

The instructions are limited to two source registers and one target, which ssmplifies the computer (e.g., the
register file requires no more than two read ports and one write port). It a'so simplifies an optimizing compiler,
because the compiler does not need to deal with instructions that have multiple targets. The price paid for thisis
that a program that wants both the quotient and remainder of two numbers (not uncommon) must execute two
instructions (divide and remainder). The usual machine division algorithm produces the remainder as a by-
product, so many machines make them both available as aresult of one execution of divide. Similar remarks
apply to obtaining the doubleword product of two words.

The conditional move instructions (e.g., MOV e() ostensibly have only two source operands, but in a sense they

have three. Because the result of the instruction depends on the values in RT, RA, and RB, a machine that
executes instructions out of order must treat RT in these instructions as both a use and a set. That is, an
instruction that sets RT, followed by a conditional move that sets RT, must be executed in that order, and the
result of the first instruction cannot be discarded. Thus, the designer of such a machine may elect to omit the
conditional move instructions to avoid having to consider an instruction with (logically) three source operands.
On the other hand, the conditional move instructions do save branches.

Instruction formats are not relevant to the purposes of this book, but the full RISC instruction set described
above, with floating point and afew supervisory instructions added, can be implemented with 32-hbit
instructions on a machine with 32 general purpose registers (5-bit register fields). By reducing the immediate
fields of compare, load, store, and trap instructions to 14 bits, the same holds for a machine with 64 general
purpose registers (6-hit register fields).

Execution Time

We assume that al instructions execute in one cycle, except for the multiply, divide, and remainder
instructions, for which we do not assume any particular execution time. Branches take one cycle whether they
branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on whether one or two elementary
arithmetic instructions are required to generate the constant in aregister.

Although load and store instructions are not often used in this book, we assume they take one cycle and ignore
any load delay (time lapse between when aload instruction completes in the arithmetic unit, and when the
requested datais available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical instructionsis often insufficient
for estimating the execution time of a program. Execution can be slowed substantially by load delays and by
delaysin fetching instructions. These delays, although very important and increasing in importance, are not
discussed in this book. Another factor, one which improves execution time, iswhat is called "instruction-level
paralelism," which isfound in many contemporary RISC chips, particularly those for "high-end" machines.

These machines have multiple execution units and sufficient instruction-dispatching capability to execute
instructions in parallel when they are independent (that is, when neither uses aresult of the other, and they don't
both set the same register or status bit). Because this capability is now quite common, the presence of
independent operations is often pointed out in this book. Thus, we might say that such and such aformulacan
be coded in such away that it requires eight instructions and executes in five cycles on a machine with
unlimited instruction-level parallelism. This meansthat if the instructions are arranged in the proper order
("scheduled™), a machine with a sufficient number of adders, shifters, logical units, and registers can in
principle execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their instruction-level parallelism
capabilities. For example, an IBM RS/6000 processor from ca. 1992 has a three-input adder, and can execute
two consecutive add-type instructions in parallel even when one feeds the other (e.g., an add feeding a
compare, or the base register of aload). As acontrary example, consider a simple computer, possibly for low-
cost embedded applications, that has only one read port on its register file. Normally, this machine would take
an extracycle to do a second read of the register file for an instruction that has two register input operands.
However, suppose it has a bypass so that if an instruction feeds an operand of the immediately following
instruction, then that operand is available without reading the register file. On such a machine, it is actually
advantageous if each instruction feeds the next—that is, if the code has no parallelism.

Chapter 2. Basics

M anipulating Rightmost Bits

Addition Combined with Logical Operations

Inequalities among L ogical and Arithmetic Expressions

Absolute Value Function

Sign Extension

Shift Right Signed from Unsigned

Sign Function

Three-Vaued Compare Function

Transfer of Sign

Decoding a"Zero Means 2**n" Field_

Comparison Predicates

Overflow Detection

Condition Code Result of Add, Subtract, and_ Multiply

Rotate Shifts

Double-Length Add/Subtract

Double-Length Shifts

Multibyte Add, Subtract, Absolute Value

Doz, Max, Min

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec5&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec7&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec8&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec9&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec10&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec11&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec12&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec13&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec14&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec15&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec16&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec17&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec18&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

Exchanging Registers

Alternating among Two or More Vaues

http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec19&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec20&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

2-1 Manipulating Rightmost Bits

Some of the formulasin this section find application in later chapters.

Use the following formulato turn off the rightmost 1-bit in aword, producing 0O if none (e.g., 01011000
==01010000):

x&(x—-1)

This may be used to determine if an unsigned integer is a power of 2; apply the formulafollowed by a O-test on
the resuilt.

Similarly, the following formula can be used to test if an unsigned integer is of the form 2" - 1 (including O or
al 1's):

x&(x+1)

Use the following formulato isolate the rightmost 1-bit, producing O if none (e.g., 01011000 =r"'00001000):

x & (—x)

Use the following formulato isolate the rightmost O-bit, producing O if none (e.g., 10100111 ='r‘OOOOlOOO):

—r & (x+1)

Use one of the following formulas to form amask that identifiesthe trailing O's, producing al 1'sif x =0 (e.g.,
01011000 =—"00000111):

—x & (x—1), or
—(x | —x), or
(x&—-x)—1

Thefirst formula has some instruction-level parallelism.

Use the following formulato form a mask that identifies the rightmost 1-bit and the trailing O's, producing all
1'sif x = 0 (e.g., 01011000 —00001111):

x@(x—-1)

Use the following formulato right-propagate the rightmost 1-bit, producing all 1'sif x = 0 (e.g., 01011000
=—01011111):

x| (x—1)

Use the following formulato turn off the rightmost contiguous string of 1-bits (e.g., 01011000 ='r‘OlOOOOOO):

(x| (x—-1)N+1) &x

This may be used to see if a nonnegative integer is of the form 2 - 2K for somej :_:'k :_:"0; apply the formula
followed by a O-test of the result.

These formulas al have dualsin the following sense. Read what the formula does, interchanging 1'sand O'sin
the description. Then, in the formula, replace x - 1 withx + 1, x + L with x - 1, -x with =(x + 1), & with |, and |
with &. Leave x and -x alone. Then the result is avalid description and formula. For example, the dual of the
first formulain this section reads as follows:

Use the following formulato turn on the rightmost 0-bit in aword, producing al 1'sif none (e.g., 10100111
=10101111):

x| (x+1)

Thereisasimple test to determine whether or not a given function can be implemented with a sequence of
add's, subtract's, and's, or's, and not's [War]. We may, of course, expand the list with other instructions that can
be composed from the basic list, such as shift left by afixed amount (which is equivalent to a sequence of
add's), or multiply. However, we exclude instructions that cannot be composed from the list. Thetest is
contained in the following theorem.

Theorem. A function mapping words to words can be implemented with word-parallel add, subtract, and, or,
and not instructions if and only if each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking only at the rightmost bit of each
input operand. Then, try to compute the next bit to the left by looking only at the rightmost two bits of each
input operand, and so forth. If you are successful in this, then the function can be computed with a sequence of
add's, and's, and so on. If the function cannot be computed in this right-to-left manner, then it cannot be
implemented with a sequence of such instructions.

The interesting part of thisisthe latter statement, and it is ssimply the contrapositive of the observation that the
functions add, subtract, and, or, and not can al be computed in the right-to-left manner, so any combination of
them must have this property.

To seethe"if" part of the theorem, we need a construction that is alittle awkward to explain. We illustrate it
with a specific example. Suppose that a function of two variables x and y has the right-to-left computability
property, and suppose that bit 2 of the result r is given by

Equation 1

ry = Xy | (x & py).

We number bits from right to left, O to 31. Because bit 2 of the result is afunction of bits at and to the right of
bit 2 of the input operands, bit 2 of the result is "right-to-left computable.”

Arrange the computer words X, x shifted left two, and y shifted |eft one, as shown below. Also, add a mask that
isolates bit 2.

http:// /?xmlid=0-201-91465-4/biblio#bib59

Xy X3g -0 X3 X3 X)X
Xag Xag ..o X X O 0
V0 Yag - V2 ¥y g U
O 0 ...01T 00
o0 ... 000

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (following Equation (1)), and and the
result with the mask (row 4 above). The result isaword of all O's except for the desired result bit in position 2.
Perform similar computations for the other bits of the result, or the 32 resulting words together, and the result is
the desired function.

This construction does not yield an efficient program; rather, it merely shows that it can be done with
instructionsin the basic list.

Using the theorem, we immediately see that there is no sequence of such instructions that turns off the leftmost
1-bit in aword, because to see if a certain 1-bit should be turned off, we must ook to the left to seeif it isthe
leftmost one. Similarly, there can be no such sequence for performing aright shift, or arotate shift, or aleft
shift by avariable amount, or for counting the number of trailing O'sin aword (to count trailing O's, the
rightmost bit of the result will be 1 if there are an odd number of trailing 0's, and we must look to the left of the
rightmost position to determine that).

A novel application of the sort of bit twiddling discussed above is the problem of finding the next higher
number after a given number that has the same number of 1-bits. You are forgiven if you are asking, "Why on
earth would anyone want to compute that?' It has application where bit strings are used to represent subsets.
The possible members of aset are listed in alinear array, and a subset is represented by a word or sequence of
wordsin which bit i ison if member i isin the subset. Set unions are computed by the logical or of the bit
strings, intersections by and's, and so on.

Y ou might want to iterate through all the subsets of a given size. Thisis easily done if you have afunction that
maps a given subset to the next higher number (interpreting the subset string as an integer) with the same
number of 1-bits.

[1]
A concise algorithm for this operation was devised by R. W. Gosper [HAK, item 175]. Given aword x that
represents a subset, the ideais to find the rightmost contiguous group of 1'sin x and the following O's, and
"increment” that quantity to the next value that has the same number of 1's. For example, the string xxx0 1111
0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111. The algorithm first identifies the
"smallest” 1-bit in x, with s=x & -X, giving 000000010000. Thisis added to x, giving r = xxx100000000. The
1-bit here is one bit of the result. For the other bits, we need to produce aright-adjusted string of n- 1 1's,
where n isthe size of the rightmost group of 1'sin x. This can be done by first forming the exclusive or of r and

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02eq01#ch02eq01
http:// /?xmlid=0-201-91465-4/biblio#bib25
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02footnote01#ch02footnote01

X, which gives 0001 1111 0000 in our example.

[1] A variation of this algorithm appears in [H&S] sec. 7.6.7.

This has two too many 1's, and needs to be right-adjusted. This can be accomplished by dividing it by s, which
right-adjustsit (sis apower of 2), and shifting it right two more positions to discard the two unwanted bits. The
final result isthe or of thisand r.

In computer algebra notation, the result isy in

Equation 2

se—x & x
Fre—s+x

yer| (((x@r)=2)1s)

A complete C procedureis given in Figure 2-1. It executes in seven basic RISC instructions, one of which is
division. (Do not use this procedure with x = 0O; that causes division by 0.)

Figure 2-1 Next higher number with same number of 1-bits.
unsi gned snoob(unsi gned x) {

unsi gned smal l est, ripple, ones;
/[l x = xxx0 1111 0000

smal lest = x & -X; [/ 0000 0001 0000
ripple = x + smal | est; /] xxx1 0000 0000
ones = x ™ ripple; /] 0001 1111 0000
ones = (ones >> 2)/smallest; // 0000 0000 0111
return ripple | ones; /] xxx1 0000 0111

If division is slow but you have afast way to compute the number of trailing zeros function ntz(x), the number
of leading zeros function nlz(x), or population count (pop(x) is the number of 1-bitsin x), then the last line of
Equation (2) can be replaced with one of the following:

http:// /?xmlid=0-201-91465-4/biblio#bib32
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02list01#ch02list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02eq02#ch02eq02

yer | ((x@r)= (2 +ntz(x)))

yper | ((x @ r) = (33 —nlz(s)))
yer | ((1=<(poplx@r)-2))-1)

2-2 Addition Combined with Logical Operations

We assume the reader isfamiliar with the elementary identities of ordinary algebra and Boolean algebra. Below
isaselection of similar identities involving addition and subtraction combined with logical operations:

a -x = —x+1
b = =lx—1)
c —Xx = -x-1
d ——x = x+1

e -—x =x-1

x+ty=x-—=y-1

Sx@p)tilxd&y)

9.

h = (x| pHx&y)

i =2x | - (xDy)

i x—p=x+-pt+l

k. = (x@py)-2~x&)
= (x&—y)-(nx & y)

m. =2(x&—p)-(x@Y)

xBy=(x|y-(x&y)

o x& oy =(x|y)-y

0. = x-(x& y)

q —(x—y) =y-x-1

r. - oAty

S x=y=(x&p)-(x | y-1
t. =(x&y)t-(x | y)
0 x|yp=(x&=-pty

v x&y = (—x | y)-—x

Equation (d) may be applied to itself repeatedly, giving -—--x = X + 2, and so on. Similarly, from (e) we have -
—=-=-X = X - 2. SO we can add or subtract any constant, using only the two forms of complementation.

Equation (f) isthe dual of (j), where (j) isthe well-known relation that shows how to build a subtracter from an
adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation (g) forms a sum by first computing

the sum with carriesignored (x @y) and then adding in the carries. Equation (h) is simply modifying the
addition operands so that the combination O + 1 never occurs at any bit position; it is replaced with 1 + 0.

It can be shown that in the ordinary addition of binary numbers with each bit independently equally likely to be
O or 1, acarry occurs at each position with probability about 0.5. However, for an adder built by
preconditioning the inputs using (g), the probability is about 0.25. This observation is probably not of valuein
building an adder, because for that purpose the important characteristic is the maximum number of logic
circuits the carry must pass through, and using (g) reduces the number of stages the carry propagates through by
only one.

Equations (k) and () are duals of (g) and (h), for subtraction. That is, (k) has the interpretation of first forming

the difference ignoring the borrows (x $y), and then subtracting the borrows. Similarly, Equation (I) is ssmply
modifying the subtraction operands so that the combination 1 - 1 never occurs at any bit position; it is replaced
with 0 - 0.

http:// /?xmlid=0-201-91465-4/biblio#bib25

Equation (n) shows how to implement exclusive or in only three instructions on a basic RISC. Using only and-
or-not logic requires four instructions ((X | y) & =(x & y)). Similarly, (u) and (v) show how to implement and
and or in three other elementary instructions, whereas using DeMorgan's laws requires four.

2-3 Inequalities among Logical and Arithmetic Expressions

Inequalities among binary logical expressions whose values are interpreted as unsigned integers are nearly
trivial to derive. Here are two examples:

(x@®y)<(x | py), and

(x&y)<(x=y).

These can be derived from alist of all binary logical operations, shownin Table 2-1.

Let f(x, y) and g(X, y) represent two columnsin Table 2-1. If for each row in which f(x, y) is 1, g(x, y) dlsois 1,
then for all (x, y), fix, ¥) = glx, y). Clearly, this extends to word-parallel logical operations. One can easily

read off such relations (most of which are trivial) as (* &y)sx<(x | =v)andsoon. Furthermore, if two
columns have arow in which one entry is 0 and the other is 1, and another row in which the entriesare 1 and 0,
respectively, then no inequality relation exists between the corresponding logical expressions. So the question

] v 0 . .
of whether or not S, 1) < glx, v) is completely and easily solved for al binary logical functionsf and g.

Table 2-1. The 16 Binary Logical Operations

X|Y[0[x&y | x& =y x| -x&y |y|, €Dy | XY | =XY) [xFy |~y x|~y | x| x|y | ~(x&}y) |1
000 0 00 00 0 A 1 1 1 11 1 1
0100 0 01 111 1 0 0 0 [0 1 1 1 1
10010 1 100 01 1 0 0 1 1 0 0 1 1
11012 0 10 10 1 0 1 0 0 11 0 1
Use caution when manipulating these relations. For example, for ordinary arithmetic, if x +y <aandz Ex,

<

then z+y —=a. But thisinferenceis not valid if "+" is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more interesting. Below is asmall selection.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02table01#ch02table01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02table01#ch02table01

(x | ») 2 max(x, y)

a
b. (x & y) < min(x, y)

c. (x | y)<x+p itthe addition does not overflow
d (x | y)£x+y ifthe addition overflows

e. lx—y <(x® V)

i
The proofs of these are quite simple, except possibly for the relation x—pl<(x@y). By |X - y| we mean
the absolute value of x -y, which may be computed within the domain of unsigned numbers as max(x, y) - min
(x, y). Thisrelation may be proven by induction on the length of x and y (the proof is alittle easier if you
extend them on the left rather than on the right).

2-4 Absolute Value Function

If your machine does not have an instruction for computing the absolute value, this computation can usually be

donein three or four branch-free instructions. First, compute yexs3 1and then one of the following:
abs nabs

(x@y)-y y=(x@®y)

(x+)@y (y—x)@y

x—(2x & y) (Zx & y)-x

By "2x" we mean, of course, X + X or X << 1.

If you have afast multiply by avariable whose value is £1, the following will do:

((x=30) | 1)#x

2-5 Sign Extension

By "sign extension,” we mean to consider a certain bit position in aword to be the sign bit, and we wish to
propagate that to the left, ignoring any other bits present. The standard way to do thisis with shift left logical
followed by shift right signed. However, if these instructions are slow or nonexistent on your machine, it may
be done with one of the following, where we illustrate by propagating bit position 7 to the left:

((x + 0x00000080) & 0x000000FF) — 0x00000080
((x & 0x000000FF) @ 0x00000080) — 0x0000 0080

The"+" above can also be"-" or $ The second formulais particularly useful if you know that the unwanted
high-order bitsare al 0's, because then the and can be omitted.

2-6 Shift Right Signed from Unsigned

If your machine does not have the shift right signed instruction, it may be computed using the formulas shown
below. Thefirst formulaisfrom [GM], and the second is based on the same idea. Assuming the machine has

mod 64 shifts, the first four formulas hold for O <n ':—:31, and the last holds for O <n ':—:63. Thelast formula
holds for any nif by "holds" we mean "treats the shift amount to the same modulus as does the logical shift."

When nisavariable, each formularequiresfive or six instructions on abasic RISC.

((x + 0x80000000) <% 7) — (0x80000000 2)
t— OxB80000000 = n; ((x=n)®H—t
e (x & 0x80000000) =% n; (x==n)—(t+1)
(x%nm) | (—(x=%31)=<31-n)
te——(x531) (x®HN=n)Df

i

In the first two formulas, an alternative for the expression Ox80000000 == nisq1 <<31-n.

If nisaconstant, the first two formulas require only three instructions on many machines. If n = 31, the

L
function can be doneiin two instructionswith — (X == 3 1).

http:// /?xmlid=0-201-91465-4/biblio#bib21

2-7 Sign Function

The sign, or signum, function is defined by

1, x<0,
sign(x) = 4 0, x=0,
I, x>0

It may be calculated with four instructions on most machines [Hop]:

(x=31) | (—x=31)

If you don't have shift right signed, then use the substitute noted at the end of Section 2-6, giving the following
nicely symmetric formula (five instructions):

—(x=3D | (—x=31)

Comparison predicate instructions permit a three-instruction solution, with either

Equation 3

(x>0)—(x<0), or
(x=20)—(x=<0).

Ay (x L3 -
Finally, we note that the formula (=x=31)—(x =31) almost works; it failsonly for x = -231,

http:// /?xmlid=0-201-91465-4/biblio#bib29
http:// /?xmlid=0-201-91465-4/ch02lev1sec6#ch02lev1sec6

2-8 Three-Valued Compare Function

The three-valued compar e function, a dight generalization of the sign function, is defined by

-1, x<y,
cmplx,) = ¢ 0, x=y,
I, x>

There are both signed and unsigned versions, and unless otherwise specified, this section applies to both.

Comparison predicate instructions permit a three-instruction solution, an obvious generalization of Equations

(3):

(x>y)—-(x<y). or
(x2y)-(x=y).

A solution for unsigned integers on PowerPC is shown below [CWG]. On this machine, "carry"” is"not borrow."

subf R5, Ry, Rx # R5 <-- RXx - Ry.

subfc R6, Rx, Ry # R6 <-- Ry Rx, set carry.

subfe R7, Ry, Rx # R7 <-- Rx - Ry + carry, set carry.
subfe R8, R7, R5 # R8 <-- R5 R7 + carry, (set carry).

If limited to the instructions of the basic RISC, there does not seem to be any particularly good way to compute

this function. The comparison predicates x <y, x Ey, and so on, require about five instructions (see Section 2-

11), leading to a solution in about 12 instructions (using a small amount of commonality in computing x <y

and x >y). On the basic RISC it's probably preferable to use compares and branches (six instructions executed
worst case if compares can be commoned).

http:// /?xmlid=0-201-91465-4/ch02lev1sec7#ch02eq03
http:// /?xmlid=0-201-91465-4/ch02lev1sec7#ch02eq03
http:// /?xmlid=0-201-91465-4/biblio#bib10
http:// /?xmlid=0-201-91465-4/ch02lev1sec11#ch02lev1sec11
http:// /?xmlid=0-201-91465-4/ch02lev1sec11#ch02lev1sec11

2-9 Transfer of Sign

The transfer of sign function, called ISIGN in Fortran, is defined by

abs(x), y=0,

ISIGN{,{I:_}I} = { dh.‘!(x} y< ()

This function can be calculated (modulo 232) with four instructions on most machines:

f— y=31; 1 (x® yp)=31;
ISIGN(x,) = (abs(x)Dt)—1 ISIGN(x, p) = (xE2D—t¢
= (abs(x)+¢) P 1 = (x+t8) @t

2-10 Decoding a "Zero Means 2**n" Field

Sometimes a 0 or negative value does not make much sense for a quantity, so it is encoded in an n-bit field with
a 0 value being understood to mean 2", and a non-zero value having its normal binary interpretation. An
exampleisthe length field of PowerPC's load string word immediate (I swi) instruction, which occupies five
bits. It is not useful to have an instruction that loads zero bytes, when the length is an immediate quantity, but it
is definitely useful to be able to load 32 bytes. The length field could be encoded with values from 0 to 31
denoting lengths from 1 to 32, but the "zero means 32" convention resultsin ssmpler logic when the processor

must also support a corresponding instruction with a variable (in-register) length that employs straight binary
encoding (e.g., PowerPC's| swx instruction).

Itistrivia to encode an integer in the range 1 to 2" into the "zero means 2™ encoding—simply mask the
integer with 2" - 1. To do the decoding without a test-and-branch is not quite as simple, but below are some

possibilities (no doubt overdone), illustrated for a 3-bit field. They all require three instructions, not counting
possible loads of constants.

((x—1)&T7)+1 ((x+7) | -8)+9 8- (—x&T)
((x+T7)&T)+1 ((x+7) | 8)-7 ~(-x | - 8)
((x—1) | -8)+9 ((x-1)&8) +x

2-11 Comparison Predicates

A "comparison predicate” is afunction that compares two quantities, producing a single bit result of 1 if the
comparisonistrue, and O if the comparison isfalse. Below we show branch-free expressions to evaluate the
result into the sign position. To produce the 1/0 value used by some languages (e.g., C), follow the code with a
shift right of 31. To produce the -1/0 result used by some other languages (e.g., Basic), follow the code with a
shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS, the Compaqg Alpha, and our model
RISC, which have comparison instructions that compute many of these predicates directly, placing a 0/1-valued
result in ageneral purpose register.

A machine instruction that computes the negative of the absolute value is handy here. We show this function as
"nabs." Unlike absolute value, it iswell defined in that it never overflows. Machines that do not have "nabs’ but
have the more usual "abs"' can use -abs(x) for nabs(x). If x isthe maximum negative number, this overflows
twice, but the result is correct. (We assume that the absol ute value and the negation of the maximum negative
number isitself.) Because some machines have neither "abs' nor "nabs," we give an alternative that does not
use them.

The"nlz" function is the number of leading zerosin its argument. The "doz" function (difference or zero) is
described on page 37.

x=y abs(x— y) -1
abs(x — y + 0x80000000)
nlz(x - y) << 26
(nlz(x — y) = 3)
—(x—y | y-x)

X #y nabs(x — y)
nlz(x — y)— 32
x-y|yp-x
x<y: (x=p)@[(xDy) &((x-y) Dx)]
(x&=y) | ((x=p) & (x-y))
nabs(doz(y, x)) [GSO]
x <y (x | 2 &((x@ p) | ~(y-x))
((x=p)=1)+(x&=y) [GSO]
X<y (mx&y) | ((x=p)&(x—y))
(mx&y) | ((—x |)& (x—p))
X<y (x| »&(x@y) | —=(y—x))

For x >y, X -Ey, and so on, interchange x and y in the formulas for x <y x ':—:y, and so on. The add of

0x80000000 may be replaced with any instruction that inverts the high-order bit (inx, y, or x - y).

Another class of formulas can be derived from the observation that the predicate X <y is given by the sign of
x/2 - y/I2, and the subtraction in that expression cannot overflow. The result can be fixed up by subtracting 1in
the cases in which the shifts discard essential information, as follows:

X<y (x=1-(r=1-(-x&y&1)
X <y (xS 1) () (—x&p&l)

These execute in seven instructions on most machines (six if it has and not), which is no better than what we

have above (five to seven instructions, depending upon the fullness of the set of logic instructions).

The formulas above involving "nlz" are due to [Shep], and hisformulafor the x =y predicate is particularly

useful because aminor variation of it gets the predicate evaluated to a 1/0-valued result with only three
instructions:

nlz(x — y) = 5.

Signed comparisons to 0 are frequent enough to deserve special mention. Below are some formulas for these,
mostly derived directly from the above. Again, the result isin the sign position.
x=0: abs(x) - 1
abs(x + 0x80000000)
nlz(x) <= 26
—(nlz(x) == 5)
—(x | —x)
—x&(x-1)
x=0: nabs(x)
nlz{x)— 32
x| -=x
(x5 1)-x [CWG]
x<0: X
x=0: x| (x-1)
x| -—x
x=10: x & nabs(x)
(x=1)-x
—x & =x

x=0: —X

http:// /?xmlid=0-201-91465-4/biblio#bib56

Signed comparisons can be obtained from their unsigned counterparts by biasing the signed operands upwards
by 231 and interpreting the results as unsigned integers. The reverse transformation also works. Thus we have

x<y=x+23 2 p+23

x&y=x-23<yp-23

i
Similar relations hold for = » = »and so on. Addition and subtraction of 231 are equivalent, as they amount to
inverting the sign bit.

Another way to get signed comparisons from unsigned is based on the fact that if x and y have the same sign,

| = [L - . . —
then * < J X < ¥Vswhereasif they have opposite signs, then X<y
reverse transformation also works, so we have

.l:' ¥
A+ = ¥[Lamp]. Again, the

x<y=(xzy)@x;; @y; and

I

X<y = (x<y)Dx; B py,

i
where x3,and y3; are the sign bits of x andy, respectively. Similar relations hold for <, = *and so on.

Using either of these devices enables computing all the usual comparison predicates other than = and Zin
terms of any one of them, with at most three additional instructions on most machines. For example, let us take

I
XE Vas primitive, because it is one of the simplest to implement (it is the carry bit fromy - x). Then the other
predicates can be obtained as follows:

http:// /?xmlid=0-201-91465-4/biblio#bib42

x<y = —=(p+23 < x+23)

|

x<y =x+23 < p4 23

-
e
Fost
il

J
o
-
=
'
L

Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this may permit concise code for
some of the comparison predicates. Below are listed several of these relations. The notation carry(expression)
means the carry bit generated by the outermost operation in expression. We assume the carry bit for the
subtraction x - y iswhat comes out of the adder for x +y + 1, which is the complement of "borrow."

X =y carry(0 = (x — y)), or carry((x + y) + 1), or
carry((x—y—-1)+1)

xX#y: carry((x — y) = 1), re, carry({x = y) +(-1))

x<y: —carry((x + 231) — (y + 231))

x<y: carry((y + 231) — (x + 231))

X <y —carry(x — y)

x<y: carry(y — x)

x=10: carry(0 — x), or carry(x + 1)

x#0: carry(x — 1), i.e., carry(x + (—1})

x<0: carry(x + x)

x<0: carry(23! — (x + 231))

For x >y, use the complement of the expression for x Ey, and similarly for other relationsinvolving "greater

than.”

The GNU Superoptimizer has been applied to the problem of computing predicate expressions on the IBM
RS6000 computer and its close relative PowerPC [GK]. The RS/6000 has instructions for abs(x), nabs(x), doz
(X, y), and anumber of forms of add and subtract that use the carry bit. It was found that the RS/6000 can
compute all the integer predicate expressions with three or fewer elementary (one-cycle) instructions, aresult
that surprised even the architects of the machine. "All" includes the six two-operand signed comparisons and
the four two-operand unsigned comparisons, all of these with the second operand being O, and all in forms that
produce a 1/0 result or a-1/0 result. PowerPC, which lacks abs(x), nabs(x), and doz(x, y), can compute all the
predicate expressions in four or fewer elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have away of evaluating the integer comparison predicates to a 1-bit result. The result bit may
be placed in a"condition register” or, for some machines (such as our RISC model), in ageneral purpose
register. In either case, the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit comparison result.

Below isthelogic for these operations. It is assumed that the machine computesx -yasx +y + 1, and the
following quantities are available in the result:

C,, the carry out of the high-order position
C;, the carry into the high-order position

N, the sign bit of the result

Z, which equals 1 if the result, exclusive of C, is all-0, and is otherwise O

Then we have the following in Boolean algebra notation (juxtaposition denotes and, + denotes or):

http:// /?xmlid=0-201-91465-4/biblio#bib17

x=y
X#E)
X<y
Xy
x>y

X2y

i

X<y

5

X<y

I

Xy

)

X=)

C,ecC, (signed overflow)
£

Z

N®V

(Nd)+ 2

(N=1)Z

N=F

™

i

’n-+‘?"l

-

o

™~y

¥

2-12 Overflow Detection

"Overflow" means that the result of an arithmetic operation is too large or too small to be correctly represented
in the target register. This section discusses methods that a programmer might use to detect when overflow has
occurred, without using the machine's "status bits' that are often supplied expressly for this purpose. Thisis
important because some machines do not have such status bits (e.g., MIPS), and because even if the machineis
SO equipped, it is often difficult or impossible to access the bits from a high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary machines invariably discard the high-
order bit of the result and store the low-order bits that the adder naturally produces. Signed integer overflow of
addition occursif and only if the operands have the same sign and the sum has sign opposite to that of the
operands. Surprisingly, this same rule applies even if thereisacarry into the adder—that is, if the calculation is
x +y + 1. Thisisimportant for the application of adding multiword signed integers, in which the last addition is
asigned addition of two fullwords and a carry-in that may be O or +1.

To prove therule for addition, let x and y denote the values of the one-word signed integers being added, let c
(carry-in) be 0 or 1, and assume for simplicity a4-bit machine. Then if the signs of x and y are different,

B<yr=<-—|.and

D=y=T,

or similar bounds apply if X is nonnegative and y is negative. In either case, by adding these inequalities and
optionally adding in 1 for c,

—BZxt+ytesT.

Thisisrepresentable as a 4-hit signed integer, and thus overflow does not occur when the operands have
opposite signs.

Now suppose x and y have the same sign. There are two cases:

—
ot
-
—
=
et

8= y=-1] D=x=7
L Uy D=y<7
Thus,
(a) (b)
lo=x+y+e=s-—1 =x+y+e=ls.

Overflow occursif the sum is not representable as a 4-bit signed integer— that is, if

(a) (b)

l6=x+y+te=-9 B=x+ty+te=1s5,

In case (a), thisis equivalent to the high-order bit of the 4-bit sum being O, which is opposite to the sign of x
andy. In case (b), thisis equivaent to the high-order bit of the 4-bit sum being 1, which again is opposite to the
signof x and y.

For subtraction of multiword integers, the computation of interestisx - y- cwhereagaincisOor 1, witha
value of 1 representing a borrow-in. From an analysis similar to the above, it can be seen that overflow in the
final value of x - y - coccursif and only if x and y have opposite signs and the sign of X - y - c is opposite to
that of x (or, equivalently, the same as that of y).

This leads to the following expressions for the overflow predicate, with the result being in the sign position.
Following these with a shift right or shift right signed of 31 produces a 1/0- or a -1/0-valued result.

X+t yte X—y-—¢
(x=y)&((x+y+c)Dx) (x@ p)& ((x—y—¢c) ® x)
((x+tyte)@x)&((x+tyte)@y) ((x-p-c)@Bx)&((x-p-c)=y)

By choosing the second alternative in the first column, and the first alternative in the second column (avoiding

the equivalence operation), our basic RISC can evaluate these tests with three instructions in addition to those
required to compute x +y + cor X - y - ¢. A fourth instruction (branch if negative) may be added to branch to
code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to test to seeif a certain addition or
subtraction will cause overflow, in away that does not cause it. One branch-free way to do thisis asfollows:

x+y+e xX—y-—c
7 (x=y) & 0x80000000 7 (x @ y) & 0x8000 0000
(x=p)&((xBz)Tyte)=y (x@y)&((x@z)-y-c)By

The assignment to zin the left column sets z = 0x80000000 if x and y have the same sign, and setsz= 0 if they
differ. Then, the addition in the second expression is done with x and y having different signs, so it can't
overflow. If x and y are nonnegative, the sign bit in the second expression will be 1 if and only if (x - 231) +y +

¢ =0—that is, iff x+y+c :_:""231, which isthe condition for overflow inevaluatingx +y + c. If xand y are
negative, the sign bit in the second expression will be 1iff (x + 231) + y + c < 0—that is, iff x + y + ¢ < -231,
which again is the condition for overflow. The term x =y ensures the correct result (0 in the sign position) if x
and y have opposite signs. Similar remarks apply to the case of subtraction (right column). The code executesin
nine instructions on the basic RISC.

It might seem that if the carry from addition is readily available, this might help in computing the signed
overflow predicate. This does not seem to be the case. However, one method along these linesis as follows.

If x isasigned integer, then x + 231 is correctly represented as an unsigned number, and is obtained by
inverting the high-order bit of x. Signed overflow in the positive direction occursif x +y =281 that is, if (x+

231) + (y + 231) =3 . 231 This|atter condition is characterized by carry occurring in the unsigned add (which
means that the sum is greater than or equal to 232) and the high-order bit of the sum being 1. Similarly,
overflow in the negative direction occurs if the carry is 0 and the high-order bit of the sumisalso 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute (x $231) +(y $231), giving sum sand carry c.
Overflow occurred iff ¢ equals the high-order bit of s.

The sum isthe correct sum for the signed addition, because inverting the high-order bits of both operands does
not change their sum.

For subtraction, the algorithm is the same except that in the first step a subtraction replaces the addition. We
assume that the carry isthat generated by computing x - yasx +y + 1. The subtraction is the correct
difference for the signed subtraction.

These formulas are perhaps interesting, but on most machines they would not be quite as efficient as the
formulas that do not even use the carry bit (e.g., overflow = (x =y) & (s $X)for addition, and (x $y) & (d
$x)for subtraction, where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set "overflow" for signed addition by means of the logic "the carry into the sign position is not
equal to the carry out of the sign position.” Curioudly, thislogic gives the correct overflow indication for both
addition and subtraction, assuming the subtraction x - yisdone by x +y + 1. Furthermore, it is correct whether
or not thereis a carry- or borrow-in. This does not seem to lead to any particularly good methods for computing
the signed overflow predicate in software, however, even though it is easy to compute the carry into the sign
position. For addition and subtraction, the carry/borrow into the sign position is given by the sign bit after
evaluating the following expressions (wherecis 0 or 1):

carry borrow
(x+yt+te)BxDy (X=yp—-c)PRxDy

In fact, these expressions give, at each position i, the carry/borrow into positioni.
Unsigned Add/Subtract

The following branch-free code may be used to compute the overflow predicate for unsigned add/subtract, with
the result being in the sign position. The expressions involving aright shift are probably useful only when it is
known that ¢ = 0. The expressions in brackets compute the carry or borrow generated from the least significant
position.

x + yp+ ¢, unsigned
(x& p) | ((x |)& =(x+y+c))
(x5 D+(rsD+H((x&p) | (x|) &e)) & 1)

x — y— ¢, unsigned
(—x&yp) | ((x=p)&(x-y-c))
(—x&p) [((0x |) &(x-y-0)
(x=1)-(y=D-[(=x&y) | ((=x |) &e)) &1]

For unsigned add's and subtract's, there are much simpler formulas in terms of comparisons [MIPS]. For
unsigned addition, overflow (carry) occursif the sumisless (by unsigned comparison) than either of the
operands. This and similar formulas are given below. Unfortunately, there is no way in these formulas to allow
for avariable c that represents the carry- or borrow-in. Instead, the program must test ¢, and use a different type
of comparison depending upon whether cisO or 1.

x+ y.unsigned x+p+1,unsigned x— y,unsigned x-—p—1,unsigned
I I L
—xty ~xky xty X2y

xtyzx x+ty+lzx X-y=x x-y-lzx

The first formulafor each case above is evaluated before the add/subtract that may overflow, and it provides a
way to do the test without causing overflow. The second formulafor each case is evaluated after the add/
subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for computing the signed overflow
predicate.

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits (it can aways be expressed in
64 bits, whether signed or unsigned). Checking for overflow is simpleif you have access to the high-order 32
bits of the product. Let us denote the two halves of the 64-bit product by hi(x x y) and lo(x X y). Then the
overflow predicates can be computed as follows [MIPS]:

http:// /?xmlid=0-201-91465-4/biblio#bib46
http:// /?xmlid=0-201-91465-4/biblio#bib46

X Xy, unsigned x X y, signed
hilxx y)£0 hi{x %) # (lo(x X y) = 31)

One way to check for overflow of multiplication isto do the multiplication and then check the result by
dividing. But care must be taken not to divide by O, and there is a further complication for signed
multiplication. Overflow occursif the following expressions are tr ue:

Unsigned Signed
ZEX%Y L X ®Yy
y20&z iy #x (y<0&x=-2%) | (y£0&z+y#x)

The complication arises when x = -231 and y = -1. In this case the multiplication overflows, but the machine
may very well give aresult of -231. This causes the division to overflow, and thus any result is possible (for
some machines). Therefore, this case has to be checked separately, which is done by thetermy <0 & x =-231,
The above expressions use the "conditional and" operator to prevent dividing by O (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication without doing the multiplication (that
is, without causing overflow). For unsigned integers, the product overflowsiff xy > 232 -1, or x> ((232 - 1)/ y,

or, sincex isan integer, * = L(2# -1]”H-"J-Expr%sed in computer arithmetic, thisis

y#0 & x ¥ (0xFFFFFFFF £ y).

For signed integers, the determination of overflow of x * yisnot so ssmple. If x and y have the same sign, then
overflow occursiff xy > 231 - 1. If they have opposite signs, then overflow occurs iff xy < -231. These
conditions may be tested as indicated in Table 2-2, which employs signed division.

Table 2-2. Overflow Test for Signed Multiplication

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec12&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02table02#ch02table02

x>0 X > OX7FFFFFFF +y y < 0x80000000 + x

x =0 X <0x80000000+y x#0 &y < 0xTFFFFFFF + x

Thistest is awkward to implement because of the four cases. It is difficult to unify the expressions very much
because of problems with overflow and with not being able to represent the number +231.

The test can be simplified if unsigned division is available. We can use the absolute values of x and y, which
are correctly represented under unsigned integer interpretation. The complete test can then be computed as
shown below. The variable c = 231 - 1 if x and y have the same sign, and ¢ = 231 otherwise.

e ((x=p)=31)+23
x < abs(x)

y e abs(y)

20 &x=(cly)

The number of leading zeros instruction may be used to give an estimate of whether or not x * y will overflow,
and the estimate may be refined to give an accurate determination. First, consider the multiplication of unsigned
numbers. It is easy to show that if x and y, as 32-bit quantities, have mand n leading O's, respectively, then the
64-bit product has either m+ nor m+ n + 1 leading O's (or 64, if either x =0 or y = 0). Overflow occursif the
64-bit product has fewer than 32 leading 0's. Hence,

nlz{x) + nlz(y) = 32: Mulaplication definitely does not overflow.

nlz{x) + nlz(y) < 30: Multiplication definitely does overflow,

For nlz(x) + nlz(y) = 31, overflow may or may not occur. In this case, the overflow assessment may be made by

evaluating T = xLy/2) Thiswill not overflow. Sincexyis2tor, if yisodd, 2t + x, the product xy overflows

if t =231, These considerations lead to a plan for computing xy but branching to "overflow" if the product
overflows. This plan is shown in Figure 2-2.

Figure 2-2 Determination of overflow of unsigned multiplication.

unsigned x, y, z, m n, t;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec12&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02list02#ch02list02

m = nl z(x);
n = nlz(y);
If (m+ n <= 30) goto overfl ow
t = x*(y > 1);
if ((int)t < 0) goto overflow
zZ = t*2;
i (y &1) {
zZ =z + X;
If (z < x) goto overflow,

}

/1 z is the correct product of x and vy.

For the multiplication of signed integers, we can make a partial determination of whether or not overflow
occurs from the number of leading 0's of nonnegative arguments, and the number of leading 1's of negative
arguments. Let

m = nlz{x) + nlz(x). and
n = nlz(y) + nlz(y).

Then, we have

m + n =2 34: Multiplication definitely does not overflow.

m + n = 31: Multiplication definitely does overflow.

There are two ambiguous cases. 32 and 33. The case m + n = 33 overflows only when both arguments are
negative and the true product is exactly 231 (machine result is-231), so it can be recognized by atest that the

product has the correct sign (that is, overflow occurred if m @n @(m * n) <0). When m+ n =32, the
distinction is not so easily made.

We will not dwell on this further, except to note that an overflow estimate for signed multiplication can also be
made based on nlz(abs(x)) + nlz(abs(y)), but again there are two ambiguous cases (a sum of 31 or 32).

Division

For the signed division x +y, overflow occursif the following expression istrue:

y=0 | (x=0x80000000 & y = -1)

Most machines signal overflow (or trap) for the indeterminate form O + 0.

Straightforward code for evaluating this expression, including afinal branch to the overflow handling code,
consists of seven instructions, three of which are branches. There do not seem to be any particularly good tricks
to improve on this, but below are afew possibilities:

[abs(y @ 0x80000000) | (abs(x) & abs(y = 0x80000000))] <0

That is, evaluate the large expression in brackets, and branch if the result isless than 0. This executes in about
nine instructions, counting the load of the constant and the final branch, on a machine that has the indicated
instructions and that gets the "compare to 0" for free.

Some other possibilities are to first compute z from

z 4 (x @ 0x80000000) | (p+1)

(three instructions on many machines), and then do the test and branch ony = 0|z = 0in one of the following
ways.

((y|-m&(z|-2))=z0
(nabs(y) & nabs(z)) =0
((nlz(y») | nlz(z)) = 5)=0

These execute in nine, seven, and eight instructions, respectively, on a machine that has the indicated
instructions. The last line represents a good method for PowerPC.

For the unsigned division * £ ¥+ overflow occurs if and only if y = 0.

2-13 Condition Code Result of Add, Subtract, and Multiply

Many machines provide a "condition code" that characterizes the result of integer arithmetic operations. Often
there is only one add instruction, and the characterization reflects the result for both unsigned and signed
interpretation of the operands and result (but not for mixed types). The characterization usually consists of the
following:

e Whether or not carry occurred (unsigned overflow)
e Whether or not signed overflow occurred

* Whether the 32-bit result, interpreted as a signed two's-complement integer and ignoring carry and
overflow, is negative, O, or positive

Some older machines give an indication of whether the infinite precision result (that is, 33-bit result for add's
and subtract's) is positive, negative, or 0. However, thisindication is not easily used by compilers of high-level
languages, and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible. The ones that cannot occur are "no
carry, overflow, result > 0," "no carry, overflow, result = 0," and "carry, overflow, result < 0." Thus, four bits
are, just barely, needed for the condition code. Two of the combinations are unique in the sense that only one
value of inputs produces them: Adding O to itself isthe only way to get "no carry, no overflow, result = 0," and
adding the maximum negative number to itself isthe only way to get "carry, overflow, result = 0." These
remarks remain true if thereisa"carry in"—that is, if we are computing x +y + 1.

For subtraction, let us assume that to compute x - y the machine actually computesx +y + 1, with the carry
produced as for an add (in this scheme the meaning of "carry" isreversed for subtraction, in that carry = 1
signifiesthat the result fitsin asingle word, and carry = 0 signifies that the result does not fit in asingle word).
Then for subtraction only seven combinations of events are possible. The ones that cannot occur are the three
that cannot occur for addition, plus "no carry, no overflow, result = 0," and "carry, overflow, result = 0."

If amachine's multiplier can produce a doubleword result, then two multiply instructions are desirable: one for
signed and one for unsigned operands. (On a 4-bit machine, in hexadecimal, F x F =01 signed,and F x F = E1
unsigned). For these instructions, neither carry nor overflow can occur, in the sense that the result will always
fit in a doubleword.

For amultiplication instruction that produces a one-word result (the low-order word of the doubleword result),
let us take "carry” to mean that the result does not fit in aword with the operands and result interpreted as
unsigned integers, and let us take "overflow" to mean that the result does not fit in aword with the operands
and result interpreted as signed two's-complement integers. Then again, there are nine possible combinations of
results, with the missing ones being "no carry, overflow, result > 0," "no carry, overflow, result = 0," and
"carry, no overflow, result = 0." Thus, considering addition, subtraction, and multiplication together, ten

combinations can occur.

2-14 Rotate Shifts

These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0 to 32 inclusive, even if the
shifts are mod-32.

Rotate left n: ye (x<==n) | (x = (32-n))

Rotate right n: ye(x=n) | (x=<(32—-n))

2-15 Double-Length Add/Subtract

Using one of the expressions shown on page 29 for overflow of unsigned addition and subtraction, we can
easily implement double-length addition and subtraction without accessing the machine's carry bit. To illustrate
with double-length addition, let the operands be (x4, Xg) and (y4, Yp), and the result be (z;, z;). Subscript 1

denotes the most significant half, and subscript O the least significant. We assume that all 32 bits of the registers
are used. The less significant words are unsigned quantities.

Xyt
[T

C [{-‘:n & o) | ((xy | Vo) & =)l =3

;l{_""l } _F] LR s

This executes in nine instructions. The second linecanbe € <~ (2 = IU] *permitting a four-instruction
solution on machines that have this comparison operator in aform that givestheresult asal or O in aregister,
such asthe "SLTU" (Set on Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction (x - y) is
2 X — Vo
b [(—xg& py) | ((xy=py) & 2¢)] = 31

X -y b

This executes in eight instructions on a machine that has afull set of logical instructions. The second line can
- i "

be b {lﬂ' =¥ rJ‘)‘permitti ng a four-instruction solution on machines that have the"SLTU" instruction.

Double-length addition and subtraction can be done in five instructions on most machines by representing the

multiple-length data using only 31 bits of the least significant words, with the high-order bit being O except
momentarily when it contains a carry or borrow bit.

http:// /?xmlid=0-201-91465-4/biblio#bib46

2-16 Double-Length Shifts

Let (X4, Xg) beapair of 32-bit words to be shifted left or right asif they were asingle 64-bit quantity, with x4
being the most significant half. Let (y4, yg) be the result, interpreted similarly. Assume the shift amount nisa

variable ranging from O to 63. Assume further that the machine's shift instructions are modulo 64 or grezter.
That is, a shift amount in the range 32 to 63 or -32 to -1 resultsin an all-0 word, unless the shift is a signed right
shift, in which case the result is 32 sign bits from the word shifted. (This code will not work on the Intel x86
machines, which have mod-32 shifts.)

Under these assumptions the shift |eft double operation may be accomplished as follows (eight instructions):

ypeex=n | xy5 (32-n0) | xp =< (n-32)

Yo & Xp=<n

The main connective in the first assignment must be or, not plus, to give the correct result when n=32. If itis
known that 0 Sn ':—:32, the last term of the first assignment may be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation may be done with

Vo Xg=n | x, <= (32-n) | x;=(n-32)

It
VX =0,

Shift right double signed is more difficult, because of an unwanted sign propagation in one of the terms.
Straightforward code follows:

if #<32then p, e x;5n | x, << (32-n)
else yy < x, = (n-32)

Y X =0

If your machine has the conditional move instructions, it is a simple matter to express this in branch-free code,
in which form it takes eight instructions. If the conditional move instructions are not available, the operation
may be done in ten instructions by using the familiar device of constructing a mask with the shift right signed
31 instruction to mask the unwanted sign propagating term:

5

Vo Xgsen | x, <= (32—-n) | [(x; 5 (n-32)) & ((32—n) = 31)]

P X =0

2-17 Multibyte Add, Subtract, Absolute Value

Some applications deal with arrays of short integers (usually bytes or halfwords), and often execution is faster
if they are operated on aword at atime. For definiteness, the examples here deal with the case of four 1-byte
integers packed into aword, but the techniques are easily adapted to other packings, such as aword containing
a 12-bit integer and two 10-bit integers, and so on. These techniques are of greater value on 64-bit machines,
because more work is donein paralel.

Addition must be done in away that blocks the carries from one byte into another. This can be accomplished by
the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there will then be no carries
across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands and the carry into that
bit.

The carry into the high-order bit of each byte is of course given by the high-order bit of each byte of the sum
computed in step 1. The subsequent similar method works for subtraction:

Addition
5§ — (x & XTFTETFTF) + (y & OXTFTF7FTI)
s ((x ® p) & 0x80808080) @ s

Subtraction
d < (x | 0x80808080) — (y & 0x7F7F7F7F)

d—((x®@y) | 0xTFIFTFTF)=d

These execute in eight instructions, counting the load of Ox7F7F7F7F, on amachine that has afull set of
logical instructions. (Change the and and or of 0x80808080 to and not and or not, respectively, of
OX7TF7F7FT7F.)

There is adifferent technique for the case in which the word is divided into only two fields. In this case,
addition can be done by means of a 32-bit addition followed by subtracting out the unwanted carry. On page 28

we noted that the expression (x +Y) $x $y gives the carries into each position. Using this and similar

observations about subtraction gives the following code for adding/subtracting two halfwords modulo 216
(seven instructions):

Addition Subtraction

§e—=x+y dée—x—y
c—(sBx@y) & 0x00010000 be—(d®x® y)& 0x00010000
§e—5—¢ de—d+b

Multibyte absolute value is easily done by complementing and adding 1 to each byte that contains a negative
integer (that is, hasits high-order bit on). The following code sets each byte of y equal to the absolute value of

each byte of x (eight instructions):

a — x & 0x80808080 // 1solate signs.

b—a=7 // Integer 1 where x is negative.
me(a-b)| a /{ 0xFF where x 15 negative.

pe (x®m)+b /{ Complement and add 1 where negative.

The third line could as well be m #=a + a - b. The addition of b in the fourth line cannot carry across byte

boundaries, because the quantity x $m has a high-order O in each byte.

2-18 Doz, Max, Min

The"doz" function is"difference or zero," defined as follows, for signed arguments:

X—y, X2V,

doz(x, y) = {

0, x<y.

It has been called "first grade subtraction," because the result is O if you try to take away too much. We will use
it to implement max(x, y) and min(x, y). In this connection it isimportant to note that doz(x, y) can be negative;
it isnegative if the subtraction overflows. The difference or zero function can be used directly to implement the
Fortran IDIM function, although in Fortran, results are generally undefined if overflow occurs.

There seemsto be no very good way to implement doz(x, y), max(x, y), and min(x, y) in a branch-free way that
is applicable to most computers. About the best we can do isto compute doz(x, y) using one of the expressions
given on page 22 for the x <y predicate, and then compute max(x, y) and min(x, y) from it, asfollows:

de—x-y
doz(x, y) = d & [(d=((xD y) & (d D x))) = 31

max(x, ¥) = y+ doz(x, y)
min(x, y) = x— doz(x, y)

This computes doz(x, y) in seven instructions if the machine has equivalence, or eight if not, and it computes
max(x, y) or min(x, y) in one more instruction.

The following are unsigned versions of these functions:

de—x—y
dozu(x, y) = d & —[((~x & p) | ((x=p) & d)) =31

maxu(x, y) = y+dozulx, y)

minu(x, y) = x - dozu(x, y)

The IBM RISC/6000 computer, and its predecessor the 801, has doz(x, y) provided as a single instruction. It
permits computing the max(x, y) and min(x, y) of signed integers in two instructions, and is occasionally useful
initself. Implementing max(x, y) and min(x, y) directly is more costly because the machine would then need
paths from the output ports of the register file back to an input port, bypassing the ALU.

[2]
Machines that have conditional move can get destructive max(X, y) and min(x, y) in two instructions. For
example, on our full RISC, x +=max(x, y) can be calculated as follows (we write the target register first):

2 A destructive operation is one that overwrites one or more of its arguments.

cnpl t

Z, X, Set z =1if x <y, else 0.
novne X,z

y
Y If z is nonzero, set x =Y.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec18&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02footnote02#ch02footnote02

2-19 Exchanging Registers
A very old trick isthat of exchanging the contents of two registers without using athird [IBM]:

X—xa@y
yi—yox
Xe=x@y

Thisworks well on atwo-address machine. The trick also works if $is replaced by the =logical operation
(complement of exclusive or), and can be made to work in various ways with add's and subtract's:

X—x+y Xe—x—y X—y—Xx
yex—p y—rymx ye—y—x
Xé&e—=x-—y X)y—Xx Xé—=x+y

Unfortunately, each of these has an instruction that is unsuitable for a two-address machine, unless the machine
has "reverse subtract."

This little trick can actually be useful in the application of double buffering, in which two pointers are swapped.
Thefirst instruction can be factored out of the loop in which the swap is done (although this negates the
advantage of saving aregister):

Outside the loop: < x® y

Inside the loop: x «~x®@ ¢
pe—=y@t

Exchanging Corresponding Fields of Registers

The problem here is to exchange the contents of two registers x and y wherever amask bit m; = 1, and to leave
x and y unaltered wherever m; = 0. By "corresponding” fields, we mean that no shifting is required. The 1-bits

http:// /?xmlid=0-201-91465-4/biblio#bib34

of m need not be contiguous. The straightforward method is as follows:

Xe—(x&m) | (y &m)
yi—(y&m) | (x & m)

X e—Xx

By using "temporaries’ for the four and expressions, this can be seen to require seven instructions, assuming
that either m or m can be loaded with a single instruction and the machine has and not as a single instruction.
If the machine is capable of executing the four (independent) and expressionsin parallel, the execution timeis
only three cycles.

A method that is probably better (five instructions, but four cycles on a machine with unlimited instruction-
level parallelism) is shown in column (&) below. It is suggested by the "three exclusive or" code for exchanging
registers.

(a) (b) (c)
xe—=x@y X X=y te—(x@y)&m
ye=yo(x & m) ye=y=(x | m) Xée—xE7r
Xe=x @y Xé—X=y yi—y@ot

The stepsin column (b) do the same exchange as that of column (a), but column (b) is useful if m does not fitin
an immediate field but m does, and the machine has the equivalence instruction.

Still another method is shown in column (c) above [GLS1]. It also takes five instructions (again assuming one

instruction must be used to load m into aregister), but executes in only three cycles on a machine with
sufficient instruction-level parallelism.

Exchanging Two Fields of the Same Register

Assume aregister x has two fields (of the same length) that are to be swapped, without altering other bitsin the
register. That is, the object isto swap fields B and D, without altering fields A, C, and E, in the computer word
illustrated below. The fields are separated by a shift distance k.

http:// /?xmlid=0-201-91465-4/biblio#bib19

'S A I C 1 E

Straightforward code would shift D and B to their new positions, and combine the words with and and or
operations, as follows:

f, = (x&m)=£k
= (x=K&m

a

X' =(x&m") | t, | 1,

Here, misamask with 1'sin field D (and O's elsewhere), and m' isamask with 1'sinfields A, C, and E. This
code requires nine instructions and four cycles on a machine with unlimited instruction-level parallelism,
allowing for two instructions to load the two masks.

A method that requires only seven instructions and executes in five cycles, under the same assumptions, is
shown below [GLS1]. It is similar to the code in column (c) on page 39 for interchanging corresponding fields

of two registers. Again, misamask that isolates field D.

t = [x®(x=k)] & m
t;

w“

t, =k

X' =x®oO

The ideaisthat t; contains B G;'D in position D (and O's elsewhere), and t, contains B G;'D in position B. This

code, and the straightforward code given earlier, work correctly if B and D are "split fields'—that is, if the 1-
bits of mask m are not contiguous.

Conditional Exchange

The exchange methods of the preceding two sections, which are based on exclusive or, degenerate into no-
operations if the mask mis 0. Hence, they can perform an exchange of entire registers, or of corresponding

http:// /?xmlid=0-201-91465-4/biblio#bib19

fields of two registers, or of two fields of the same register, if misset to all 1'sif some condition c istrue, and
toall O'sif cisfalse. Thisgives branch-free code if m can be set up without branching.

2-20 Alternating among Two or More Values

Suppose a variable x can have only two possible values a and b, and you wish to assign to x the value other than
its current one, and you wish your code to be independent of the values of a and b. For example, in a compiler x
might be an opcode that is known to be either branch true or branch false, and whichever it is, you want to
switch it to the other. The values of the opcodes branch true and branch false are arbitrary, probably defined by
aC#def i ne or enumdeclaration in a header file.

The straightforward code to do the switchis

If (x == a) x = b;
el se x = a;

or, asisoften seen in C programs,
X =X =a?b: a
A far better (or at least more efficient) way to code it is either

xe—agtbhb—-x. or
xX—adbdx.

If a and b are constants, these require only one or two basic RISC instructions. Of course, overflow in
calculating a + b can be ignored.

This raises the question: |Is there some particularly efficient way to cycle among three or more values? That is,
given three arbitrary but distinct constants a, b, and c, we seek an easy-to-evaluate function f that satisfies

fla) = b,
f(b) = ¢, and
fle) = a.

It is perhaps interesting to note that there is always a polynomial for such afunction. For the case of three
constants,

Equation 2

: _{x—a)x—b) (x—5b)x—-c) (x—ci{x—a) _
) = e ahao, T ook

(Theideaisthat if x = a, thefirst and last terms vanish, and the middle term ssimplifiesto b, and so on.) This
requires 14 arithmetic operations to evaluate, and, for arbitrary a, b, and c, the intermediate results exceed the
computer'sword size. But it isjust a quadratic; if written in the usual form for a polynomial and evaluated

[3]
using Horner'srule, it would require only five arithmetic operations (four for a quadratic with integer

coefficients, plus one for afinal division). Rearranging Equation (2) accordingly gives

Bl Horner's rule simply factors out x. For example, it evaluates the fourth-degree polynomial ax# + bx3 + cx2 + dx + e
as X(x(x(ax + b) + c) + d) + e. For a polynomial of degree n it takes n multiplications and n additions, and it is very
suitable for the multiply-add instruction.

I
(a-b)a—-c)(b-c)

+a=DWbr+(b=-c)c? +(c—a)alx

flx) = IHa=Mea+{b=c)b+{c—a)e]xl

+[(a—-Ma b+ (b-c)bie +(c—-mac?]).

Thisis getting too complicated to be interesting (or practical).

Another method, similar to Equation (2) in that just one of the three terms survives, is

fx) = (x=e)) &a)+((-(x=a)) &b)+((~(x = b)) &c).

Thistakes 11 instructions if the machine has the equal predicate, not counting loads of constants. Because the
two addition operations are combining two 0 values with a nonzero, they can be replaced with or or exclusive
or operations.

The formula can be simplified by precalculating a - c and b - ¢, and then using [GL S1]:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec20&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02footnote03#ch02footnote03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec20&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02eq04#ch02eq04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch02lev1sec20&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch02eq04#ch02eq04
http:// /?xmlid=0-201-91465-4/biblio#bib19

fx) =((-(x=eh)&(a-e))t((-(x=a) &(b-c))te, or
flx) = ((-(x=e))&(a@®e))@((-(x=a) &(bBc))@ec.

Each of these operations takes eight instructions. But on most machines these are probably no better than the
straightforward C code shown below, which executesin four to six instructions for small a, b, and c.

If (x == a) x = b;
else if (x == b) x = c;
el se x = a;

Pursuing this matter, there is an ingenious branch-free method of cycling among three values on machines that
do not have comparison predicate instructions [GL S1]. It executes in eight instructions on most machines.

Because a, b, and c are distinct, there are two bit positions, n; and n,, where the bits of a, b, and c are not al the

same, and where the "odd one out" (the one whose bit differsin that position from the other two) is different in
positions n; and n,. Thisisillustrated below for the values 21, 31, and 20, shown in binary.

I 0101 c

1 1111

1 0100 b
n 1,

Without loss of generality, rename a, b, and ¢ so that a has the odd one out in position n; and b has the odd one
out in position n,, as shown above. Then there are two possibilities for the values of the bits at position n;,,

(a,.b,.¢c,) =(0,1,1)or (1,0,0).

namely ! Similarly, there are two possibilities for the bits at

position n,, namely (a 'ﬁ'f:‘ ﬂf-‘:} =0, 1, 0) or (1, 0, 1).

it

This makes four casesin al, and formulas

for each of these cases are shown below:

http:// /?xmlid=0-201-91465-4/biblio#bib19

Case l. (a,.b,.c,)=(0,1,1), (a,,b,,c,)=(0,10)
f(x) =x, x(a-b) X, *(c—a) b
Case 2. {ﬂul, fJ”I_. Crr,} =0, 1, 1), l:ﬂ'"j, E:-”j, c”}} = (1,0, 1)
f(x) =x, x(a-b)+x, x(a—c)+(b+c—a)

Case 3. (a,.b,.c,) =(1,0,0), (a,,b,,c,) =(0,1,0)

hy? fy?

Jix) =x, =(b a)tx, x(c—a)ta

Casc 4. {-ﬂul_. ’t'u,.- Er-‘.} =(1,0,0), {ﬂjrj, b, .ec,)=(1,0, 1)

¥ i

flx) = x, #(b-a)+x, +(a-c)te

Fd

In these formulas, the left operand of each multiplication isasingle bit. A multiplication by 0 or 1 may be
converted into an and with avaue of O or all 1's. Thus, the formulas can be rewritten asillustrated below for
the first formula:

Jix)=({x=(31-n))=3D&(a-b)+ ((x = (31-n,)) = 3)&(c—a) + b

Because all variables except x are constants, this can be evaluated in eight instructions on the basic RISC. Here
again, the additions and subtractions can be replaced with exclusive or.

Thisidea can be extended to cycling among four or more constants. The essence of theideaisto find bit
positions ny, Ny, ..., a which the bits uniquely identify the constants. For four constants, three bit positions

always suffice. Then (for four constants) solve the following equation for s, t, u, and v (that is, solve the system

X
of four linear equationsin which f(x) isa, b, c, or d, and the coefficients “rare 0 or 1):

J"rl:.r] . I“IJ T -Tﬂ:'IF ™ ""-143!!' TV

If the four constants are uniquely identified by only two bit positions, the equation to solveis

flx) = Xy S + Xy, d + Xy X, 1 + .

Chapter 3. Power-of-2 Boundaries

Rounding Up/Down to a Multiple of a Known Power of 2

Rounding Up/Down to the Next Power of 2

Detecting a Power-of-2 Boundary Crossing

http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

3-1 Rounding Up/Down to a Multiple of a Known Power of 2

Rounding an unsigned integer x down to, for example, the next smaller multiple of 8, istrivial: x & -8 doesit.
- e

An alternativeis (x> 3) < 3'These work for signed integers as well, provided "round down" means to

round in the negative direction (e.g., (-37) & (-8) = -40).

Rounding up is almost as easy. For example, an unsigned integer x can be rounded up to the next greater
multiple of 8 with either of

(x+7)& -8, or
x+(—x&7)

These expressions are correct for signed integers as well, provided "round up" meansto round in the positive
direction. The second term of the second expression is useful if you want to know how much you must add to x
to make it amultiple of 8 [Gold].

To round a signed integer to the nearest multiple of 8 toward O, you can combine the two expressions abovein
an obvious way:

fe—(x==31)&T7;
(x+1) & —8

X I
An alternative for thefirst lineis f < (¥ = 2) == 29
or if the constant istoo large for itsimmediate field.

*which isuseful if the machine lacks and immediate,

Sometimes the rounding factor is given asthe log, of the alignment amount (e.g., a value of 3 means to round
to amultiple of 8). In this case, code such as the following may be used, where k = log,(alignment amount):

http:// /?xmlid=0-201-91465-4/biblio#bib22

round down: x&((-1)=k)
(x=k)<=k
round up: re—(1=k)—-1: (x+1)& =t
r—(-1)=k (x—t-1)&1¢

3-2 Rounding Up/Down to the Next Power of 2

We define two functions that are similar to floor and ceiling, but which are directed roundings to the closest
integral power of 2, rather than to the closest integer. Mathematically, they are defined by

undefined, x < 0, undefined, x < 0,
flp2(x) = <0, x =0, clp2{x) = 10, x =10,
pllegx] otherwise; 21181 otherwise.

Theinitia letters of the function names are intended to suggest "floor" and "ceiling." Thus, flp2(x) isthe

greatest power of 2 that is Ex, and clp2(x) isthe least power of 2 that is = x. These definitions make sense
even when x is not an integer (e.g., flp2(0.1) = 0.0625). The functions satisfy several relations analogous to
those involving floor and ceiling, such as those shown below, where n is an integer.

| x| = [x] iff x is an integer flp2(x) = clp2(x) iff x isa powerof 2 oris 0
lx+n] =|x]+n flp2(27x) = 27flp2(x)
[x] = -|—-x] clp2(x) = 1/7flp2(1/x), x#0

Computationally, we deal only with the case in which x is an integer, and we take it to be unsigned, so the
functions are well defined for all x. We require the value computed to be the arithmetically correct value

modulo 232 (that is, we take clp2(x) to be O for x > 231). The functions are tabul ated below for afew values of x.

X flp2(x) clp2(x)

0 0 0
] l]
2 2 2
3 2 4
4 4 4
5 4 8
EJ-I —1 3](] 23]
2'“ EII 231
231+] 231 0
232 | 231 0

Functions flp2 and clp2 are connected by the relations shown below. These can be used to compute one from
the other, subject to the indicated restrictions.

clp2{x) = 2flp2(x - 1), x#1,

= flp2(2x-1), 1<x=<23
p2(x) = clp2(x L2+ 1), x=0,

= eclp2(x+1)£2, x<23

The round-up and round-down functions can be computed quite easily with the number of leading zeros
instruction, as shown below. However, for these relations to hold for x = 0 and x > 231, the computer must have
its shift instructions defined to produce O for shift amounts of -1, 32, and 63. Many machines (e.g., PowerPC)
have "mod 64" shifts, which do this. In the case of -1, it is adequate if the machine shifts in the opposite
direction (that is, a shift left of -1 becomes a shift right of 1).

flp2(x) = 1 == (31 —nlz(x))
= 1 == (nlz{x) & 31)
= 0x80000000 = nlz(x)
clp2(x) = 1 =< (32 —nlz(x 1))
= 0x80000000 = (nlz(x - 1) - 1)

Rounding Down

Figure 3-1 illustrates a branch-free algorithm that might be useful if number of leading zeros is not available.
This algorithm is based on right-propagating the leftmost 1-bit, and executesin 12 instructions.

Figure 3-1 Greatest power of 2 less than or equal to x, branch-free.

unsi gne I

X =

2(unsi gned x) {
>> 1) ;

>> 2);

>> 4);

>> 8);
>>16) ;

nx - (x >>1);

flp
| (
| (
| (
| (
| (

X X X X X

d

X
X = X
X = X
X = X
X = X
r r

etu

Figure 3-2 shows two simple loops that compute the same function. All variables are unsigned integers. The
loop on the right keeps turning off the rightmost 1-bit of x until x = 0, and then returns the previous value of x.

Figure 3-2 Greatest power of 2 less than or equal to x, simple loops.

y = 0x80000000; do {
while (y > x) y = X;
y =y > 1; X =X & (x - 1);
return } while(x !'= 0);
return vy,

The loop on the left executesin 4nlz(x) + 3 instructions. The loop on the right, for x ?50, executes in 4pop(x)

[
instructions, if the comparison to O is zero-cost.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch03list01#ch03list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch03list02#ch03list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch03footnote01#ch03footnote01

(1] pop(x) is the number of 1-bits in Xx.
Rounding Up

The right-propagation trick yields a good algorithm for rounding up to the next power of 2. This algorithm,
shown in Figure 3-3, is branch-free and runs in 12 instructions.

Figure 3-3 Least power of 2 greater than or equal to x.

unsi gned cl p2(unsi gned x) {
X = ;

x >> 1);
X >> 2);
X >> 4);
X >> 8);
X >>16);
+ 1;

= X X X X X
I

X
X
X
X
X
X
et ur

An attempt to compute this with the obvious loop does not work out very well:

y = 1

while (y < Xx) /1 Unsigned conpari son.
y = 2%y;

return y;

This code returns 1 for x = 0, which is probably not what you want, loops forever for x :_}231, and executesin
4n +3 instructions, where n is the power of 2 of the returned integer. Thus, it is slower than the branch-free

code, in terms of instructions executed, for n =3 (x :_:"8).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch03lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch03list03#ch03list03

3-3 Detecting a Power-of-2 Boundary Crossing

Assume memory is divided into blocks that are a power of 2 in size, starting at address 0. The blocks may be
words, doublewords, pages, and so on. Then, given a starting address a and alength |, we wish to determine

whether or not the addressrangefromatoa+1-1, | :_"2, crosses a block boundary. The quantitiesa and | are
unsigned and any values that fit in aregister are possible.

If | =0 or 1, aboundary crossing does not occur, regardless of a. If | exceeds the block size, a boundary
crossing does occur, regardless of a. For very large values of | (wraparound is possible), a boundary crossing
can occur even if the first and last bytes of the address range are in the same block.

Thereisasurprisingly concise way to detect boundary crossings on the IBM System/370 [CJS]. This method is
illustrated below for ablock size of 4096 bytes (a common page size).

O RA =A(-4096)
ALR RA, RL
BO CROSSES

Thefirst instruction formsthe logical or of RA (which contains the starting address a) and the number
OxFFFFFO00. The second instruction adds in the length, and sets the machine's 2-bit condition code. For the
add logical instruction, the first bit of the condition codeis set to 1 if acarry occurred, and the second bit is set
to 1if the 32-bit register result is nonzero. The last instruction branches if both bits are set. At the branch target,
RA will contain the length that extends beyond the first page (thisis an extra feature that was not asked for).

If, for example, a= 0 and | = 4096, a carry occurs but the register result is 0, so the program properly does not
branch to label CROSSES.

Let us see how this method can be adapted to RISC machines, which generally do not have branch on carry
and register result nonzero. Using a block size of 8 for notational simplicity, the method of [CJS] branches to

CROSSES if acarry occurred ((a | -8) + | :_:"232) and the register result is nonzero ((a | -8) + | 1232). Thus, it
is equivalent to the predicate

(a | -8)+1>2%,

Thisin turnisequivalent to getting acarry in the final addition in evaluating ((a | -8) -1) + I. If the machine has
branch on carry, this can be used directly, giving a solution in about five instructions counting aload of the
constant -8.

http:// /?xmlid=0-201-91465-4/biblio#bib7
http:// /?xmlid=0-201-91465-4/biblio#bib7

) LR ,I_I- .
I the machine does not have branch on carry, we can use the fact that carry occursin X ff—x <y

(see "Unsigned Add/Subtract" on page 29) to obtain the expression

—((a | -8)-1) = 1.

Using various identities such as —(x - 1) = -x gives the following equivalent expressions for the "boundary
crossed” predicate:

—(a | -8) <1
—u{ﬂ l —B] ' 13‘:!‘
{:—.H&T]-‘-lfj

These can be evaluated in five or six instructions on most RISC computers.

Using another tack, clearly an 8-byte boundary is crossed if

fad& Ty+l-1=8§.

This cannot be directly evaluated because of the possibility of overflow (which occursif | isvery large), but it
iseasily rearranged to 8 - (a & 7) <, which can be directly evaluated on the computer (no part of it overflows).
This gives the expression

B—(a&T) &1,

which can be evaluated in five instructions on most RISCs (four if it has subtract from immediate). If a
boundary crossing occurs, the length that extends beyond the first block isgivenby | - (8 - (a & 7)) which can
be calculated with one additional instruction (subtract).

http:// /?xmlid=0-201-91465-4/ch02lev1sec12#ch02lev2sec5

Chapter 4. Arithmetic Bounds

Checking Bounds of Integers

Propagating Bounds through Add's and Subtract's

Propagating Bounds through L ogical Operations

http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

4-1 Checking Bounds of Integers
By "bounds checking" we mean to verify that an integer x is within two bounds a and b—that is, that

asxs<h,

We first assume that all quantities are signed integers.

An important application is the checking of array indexes. For example, suppose a one-dimensional array A can
be indexed by values from 1 to 10. Then, for areference A(i), a compiler might generate code to check that

| <i< 10

and to branch or trap if thisis not the case. In this section we show that this check can be done with asingle
comparison, by performing the equivalent check [PL8]:

i-1<9.

Thisis probably better code, because it involves only one compare-branch (or compare-trap), and because the
guantity i - 1 is probably needed anyway for the array addressing calculations.

Does the implementation

a<x2h=x—-a<h-a

awayswork, even if overflow may occur in the subtractions? It does, provided we somehow know that a <b.
In the case of array bounds checking, language rules may require that an array not have a number of elements
(or number of elements along any axis) that are O or negative, and this rule can be verified at compile time or,
for dynamic extents, at array allocation time. In such an environment, the transformation above is correct, as we
will now show.

http:// /?xmlid=0-201-91465-4/biblio#bib52

It is convenient to use alemma, which is good to know in its own right.

Lemma. If aand b are signed integersand a ':—:b, then the computed value b - a correctly represents the
arithmetic value b - a, if the computed value is interpreted as unsigned.

Proof. (Assume a 32-bit machine.) Because a ':—:b, the true difference b - aisin therange 0 to (231 - 1) - (-231)
=232- 1. If thetrue differenceisin the range 0 to 231 - 1, then the machine result is correct (because the result
is representable under signed interpretation), and the sign bit is off. Hence the machine result is correct under
either signed or unsigned interpretation.

If the true differenceisin the range 231 to 232 - 1, then the machine result will differ by some multiple of 232
(because the result is not representable under signed interpretation). This brings the result (under signed
interpretation) to the range -231 to -1. The machine result is too low by 232, and the sign bit is on.
Reinterpreting the result as unsigned increases it by 232, because the sign bit is given aweight of +231 rather
than -231. Hence the reinterpreted result is correct.

The "bounds theorem” is
Theorem. If aand b are signed integersand a ':—:b, then
Equation 1

a<x<h =x-u<bh-a.

Proof. We distinguish three cases, based on the value of x. In al cases, by the lemma, sincea ':—:b, the
computed value b - aisequal to the arithmetic value b - aif b - aisinterpreted as unsigned, asit isin Equation

Q.

Case 1, x< a: Inthiscase, x - ainterpreted as unsigned is x - a + 232, Whatever the values of x and b are
(within the range of 32-bit numbers),

x+232%p,

Therefore

x—aq+2¥sh-a,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq01#ch04eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq01#ch04eq01

and hence

x—a=bh—a.

In this case, both sides of Equation (1) are false.

Case 2, a <x Sh: Then, arithmetically, x - a <b- a Becausea ':—:x, by the lemma x - a equals the computed

value x - aif the latter isinterpreted as unsigned. Hence

x—a<bh-ua;

that is, both sides of Equation (1) aretrue.

Case 3,x>Db: Thenx - a>b - a. Becausein this case x > a (because b > a), by the lemma x - a equals the value
of x - aif thelatter isinterpreted as unsigned. Hence

x—a=h-a:

that is, both sides of Equation (1) are false.

The theorem stated aboveis aso trueif a and b are unsigned integers. Thisis because for unsigned integers the
lemma holds trivially, and the above proof isalso valid.

Below isalist of similar bounds-checking transformations, with the one of the theorem above stated again.
These al hold for either signed or unsigned interpretation of a, b, and x.

Equation 2

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq01#ch04eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq01#ch04eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq01#ch04eq01

ifa<hthena<x<h=x-a<bh-a=bh-x<bh-a
fa<hthena<x<h=x—-aZh-a
ifas<shthena<x<h=»b-x%h-a

ifa<bthenag<x<b=x—-a-1Zb-a-1=b—-x-1&b-a-1

Inthelast rule, b - a- 1 may be replaced with b + —a.

There are some quite different transformations that may be useful when the test is of the form -2n-1 <x Sonl
- 1. Thisisatest to seeif asigned quantity x can be correctly represented as an n-bit two's-complement integer.
To illustrate with n = 8, the following tests are equival ent:

. 128 < x <127
. x+128%255

c (x=T7)+121
d x57=x331

(x=7+(x=31)=10

e
;| (x < 24)=%24 = x
g x @ (x = 31)2127

Equation (b) is ssimply an application of the preceding material in this section. Equation (c) is as well, after
shifting x right seven positions. Equations (c)-(f) and possibly (g) are probably useful only if the constantsin
Equations (a) and (b) exceed the size of the immediate fields of the computer's compare and add instructions.

Another special caseinvolving powersof 2is

0sx<2'-le(x2n=0,

or, more generally,

a<x<at2'-le((x—a)=n)=0.

4-2 Propagating Bounds through Add's and Subtract's

Some optimizing compilers perform "range analysis' of expressions. Thisisthe process of determining, for
each occurrence of an expression in a program, upper and lower bounds on its value. Although this
optimization is not areally big winner, it does permit improvements such as omitting the range check onaC
"switch" statement and omitting some subscript bounds checks that compilers may provide as a debugging aid.

Suppose we have bounds on two variables x and y as follows, where all quantities are unsigned:

Equation 3

a=x=h, and

c=y=d.

Then, how can we compute tight bounds on x +y, x - y, and -x? Arithmetically, of course, a + ¢ <x+ y ':—:b +
d; but the point is that the additions may overflow.

The way to calculate the bounds is expressed in the following:
Theorem. If &, b, ¢, d, X, and y are unsigned integers and
a<x<h and

csy<d,

then
Equation 4
Dsx+y<2¥ 1 if a+e<2¥ 1 and b+d =23

atec<x+ ¥ <bh+d otherwise;

Equation 5

D<x—y<232 1 §f a—-d<0 and b—c20,

a—d<x— ¥ <bh—¢ otherwise;

Equation 6
0<-x<2¥-1Jf a=0 and b0,
b x<-a otherwise.

Inequalities (4) say that the bounds on x +y are "normally" a+ c and b + d, but if the calculation of a + ¢ does
not overflow and the calculation of b + d does overflow, then the bounds are 0 and the maximum unsigned
integer. Equations (5) are interpreted similarly, but the true result of a subtraction being less than O constitutes
an overflow (in the negative direction).

Proof. If neither a + ¢ nor b + d overflows, then x + y with x and y in the indicated ranges, cannot overflow,
making the computed results equal to the true results, so the second inequality of (4) holds. If botha+ cand b
+ d overflow, then so also does x + y. Now arithmetically, it is clear that

atc-28<x+y-22<h+d-23,

This, however, iswhat is calculated when the three terms overflow. Hence in this case a so,

ﬂ+c%x+)‘%b+d.

If a + ¢ does not overflow but b + d does, then

ate<232 -1 and b+d =232,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04eq05#ch04eq05

Because x + y takes on all valuesintherangea + cto b + d, it takes on the values 232 - 1 and 232—that is, the
computed value x + y takes on the values 232 - 1 and 0 (although it doesn't take on all valuesin that range).

Lastly, the case that a + ¢ overflows but b + d does not cannot occur, because a Eb and c ':—:d.

This compl etes the proof of inequalities (4). The proof of (5) is similar, but "overflow" means that atrue
differenceislessthan 0.

Inequalities (6) can be proved by using (5) with a = b = 0, and then renaming the variables. (The expression -x
with x an unsigned number means to compute the value of 232 - x, or of -x + 1 if you prefer.)

Because unsigned overflow is so easy to recognize (see "Unsigned Add/Subtract” on page 29), these results are
easily embodied in code, as shown in Figure 4-1 for addition and subtraction. The computed lower and upper
limitsarevariabless andt , respectively.

Figure 4-1 Propagating unsigned bounds through addition and subtraction operations.

s =a+ C; s = a - d;

t = b + d; t = b - c;

if (s > a &t <b) { if (s >a &t <=Dh) {
s = 0; s = 0;
t = OxFFFFFFFF;} t = OxFFFFFFFF;}

Signed Numbers

The case of signed numbersis not so clean. As before, suppose we have bounds on two variables x and y as
follows, where all quantities are signed:

Equation 7

a<x<h, and

c=yv=d.

We wish to compute tight boundson x +y, X - y, and -X. The reasoning is very similar to that for the case of
unsigned numbers, and the results for addition are shown below.

http:// /?xmlid=0-201-91465-4/ch02lev1sec12#ch02lev2sec5
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list01#ch04list01

Equation 8

atc<-2M pb+td<-23 . gqtecsxt+tysh+d
ate<-23 btdz-23: 20 x+ypg23]
23l gt <23 btd<2 iatesxty<hid
Vlga+e<2 h+d223: 2N x+ p<2i]

a+cz2 b+dz2¥ g+esx+ysh+d

The first row meansthat if both of the additionsa + ¢ and b + d overflow in the negative direction, then the
computed sum X + y lies between the computed sumsa + c and b + d. Thisis because al three computed sums
are too high by the same amount (232). The second row means that if the addition a + ¢ overflowsin the
negative direction, and the addition b + d either does not overflow or overflows in the positive direction, then
the computed sum x + y can take on the extreme negative number and the extreme positive number (although
perhaps not all values in between), which is not difficult to show. The other rows are interpreted similarly.

The rules for propagating bounds on signed numbers through the subtraction operation can easily be derived by
rewriting the boundsony as

and using the rules for addition. The results are shown below.

a-d<-23 b-c<-2"g-d=x-yEh-¢

a—d<-23 ph_cz 231 23Ny _yp<2i_|
28 <g-d<2\b-c<2¥ia-d<x-y<h-¢
2 <g-d<23 he223; 23N <x pg23]

a—-dz22Vh-c229q-dsx-y=h-¢

The rules for negation can be derived from the rules for subtraction by taking a = b = 0, omitting some
impossible combinations, simplifying, and renaming. The results are as follows:

a= —23', h= _231 oy = 231
a=-21px-23. 23 < _x<23]

a#-23:_p<-—x<—a

L

L

C code for the case of signed numbersis abit messy. We will consider only addition. It seemsto be simplest to
check for the two casesin (8) in which the computed limits are the extreme negative and positive numbers.
Overflow in the negative direction occurs if the two operands are negative and the sum is nonnegative (see
"Signed Add/Subtract" on page 26). Thus, to check for the condition that a + ¢ < -231, wecould lets =a + C;

[1]
and then code something like"i f (a <0 &&c <0 &&s >=0)" It will be more efficient, however,
to perform logical operations directly on the arithmetic variables, with the sign bit containing the true/false
result of the logical operations. Then, we write the above conditionas"i f ((a &c &~s) <0)" These

considerations lead to the program fragment shown in Figure 4-2 below.

™'1n the sense of more compact, less branchy, code; faster-running code may result from checking first for the case of
no overflow, assuming the limits are not likely to be large.

Figure 4-2 Propagating signed bounds through an addition operation.

S = a + c;
t = b + d;
u=a&cé&-~s &~(ba&da&-~t);
v=((a~c)]|] (a™s)) &(~b & ~d &t);
if ((ul] v) <0) {

s = 0x80000000;

t = OxX7FFFFFFF; }

Here u istrue (sign bitis 1) if the addition a + ¢ overflowsin the negative direction, and the addition b + d
does not overflow in the negative direction. Variable v istrueif the addition a + ¢ does not overflow and the
addition b + d overflowsin the positive direction. The former condition can be expressed as"a and ¢ have
different signs, or a and s have the samesign.” The"i f " testisequivalentto"i f (Uu<O0 || v <0) —that
is, if either u or v istrue.”

http:// /?xmlid=0-201-91465-4/ch02lev1sec12#ch02lev2sec3
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04footnote01#ch04footnote01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list02#ch04list02

4-3 Propagating Bounds through Logical Operations

Asin the preceding section, suppose we have bounds on two variables x and y as follows, where al quantities
are unsigned:

Equation 9

a=x<h, and

csy=d.

Then what are some reasonably tight boundson x |y, X & vy, X @y and —x?

Combining inequalities (9) with some inequalities from Section 2-3 on page 16, and noting that -x =232 - 1 - x,
yields
max(a, ¢)S(x | p)=b+d,

0= (x & y)=min(h, d),

0={x@y)=bhb+d, and

—b=< —1.1'£—|H,

where it is assumed that the addition b + d does not overflow. These are easy to compute and might be good
enough for the compiler application mentioned in the preceding section. The bounds in the first two
inequalities, however, are not tight. For example, writing constants in binary, suppose

Equation 10

00010 = x= 00100, and
01001 < y < 10100,

Then, by inspection (e.g., trying al 36 possibilities for x and y), we see that 01010 ':—:(x ly) <10111. Thus, the

http:// /?xmlid=0-201-91465-4/ch02lev1sec3#ch02lev1sec3

lower bound is not max(a,) nor isit a | ¢, and the upper bound isnot b + d, nor isit b | d.

Giventhevalues of a, b, ¢, and d in inequalities (9), how can one obtain tight bounds on the logical
expressions? Consider first the minimum value attained by x | y. A reasonable guess might be the value of this
expression with x and y both at their minima—that is, a | c. Example (10), however, shows that the minimum
can be lower than this.

To find the minimum, our procedure is to start with x = a and y = ¢, and then find an amount by which to
increase either x or y so asto reduce the value of x | y. The result will be this reduced value. Rather than
assigning a and c to x and y, however, we work directly with a and c, increasing one of them when doing so is
valid and it reduces the value of a | c.

The procedure is to scan the bits of a and ¢ from left to right. If both bits are O, the result will have a0 in that
position. If both bitsare 1, the result will have a 1 in that position (clearly, no values of x and y could make the
result less). In these cases, continue the scan to the next bit position. If one scanned bit is 1 and the other is 0O,
then it is possible that changing the 0 to 1 and setting all the following bitsin that bound's value to O will reduce
the value of a | c. This change will not increase the value of a | ¢, because the result hasa 1 in that position
anyway, from the other bound. Therefore, form the number with the O changed to 1 and subsequent bits
changed to O. If that is less than or equal to the corresponding upper limit, the change can be made; do it, and
theresult isthe or of the modified value with the other lower bound. If the change cannot be made (because the
atered value exceeds the corresponding upper bound), continue the scan to the next bit position.

That's al thereistoit. It might seem that after making the change, the scan should continue, looking for other
opportunities to further reduce the value of a | c. However, even if aposition is found that allows a0 to be
changed to 1, setting the subsequent bits to 0 does not reduce the value of a | ¢, because those bits are already 0.

C code for this agorithm is shown in Figure 4-3. We assume that the compiler will move the subexpressions
~a & c and a & ~c out of the loop. More significantly, if the number of leading zerosinstruction is available,
the program can be speeded up by initializing mwith

m = 0x80000000 >> nlz(a ™ c);

Figure 4-3 Minimum value of x | y with bounds on x and y.

unsi gned m nOR(unsi gned a, unsigned b,
unsi gned c¢, unsigned d) {
unsigned m tenp;

m = 0x80000000;
while (m!= 0) {
If (~ra &c &m {
tenp = (a | m &-m
If (tenp <= b) {a = tenp; break;}

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list03#ch04list03

}

else if (a &~ &m {
temp = (¢ | M & -m
i f (tenp <= d) {c = tenp; break;}

}

m=m>> 1;

}

return a | c;

This skips over initial bit positionsin which a and ¢ are both O or both 1. For this speedup to be effective when
a” cis0 (that is, when a = c), the machine's shift right instruction should be mod 64. If number of leading

zerosis not available, it may be worthwhile to use some version of the flp2 function (see page 46) with
argumenta ™ C.

Now let us consider the maximum value attained by x | y, with the variables bounded as shown in inequalities
(9). The algorithm is similar to that for the minimum, except it scans the values of bounds b and d (from left to
right), looking for a position in which both bits are 1. If such a position is found, the algorithm tries to increase
the value of ¢ | d by decreasing one of the bounds by changing the 1 to 0, and setting all subsequent bits in that
bound to 1. If thisis acceptable (if the resulting value is greater than or equal to the corresponding lower
bound), the change is made and the result is the value of ¢ | d using the modified bound. If the change cannot be
done, it is attempted on the other bound. If the change cannot be done to either bound, the scan continues. C
code for this algorithm is shown in Figure 4-4. Here the subexpression b & d can be moved out of the loop, and

the algorithm can be speeded up by initializing mwith
nmKk = 0x80000000 >> nlz(b & d);

Figure 4-4 Maximum value of x | y with bounds on x and vy.

unsi gned maxOR(unsi gned a, unsigned b,
unsi gned c, unsigned d) {
unsigned m tenp;

m = 0x80000000;
while (m!= 0) {
If (b &d&m {
tenp = (b - m | (m- 1);
iIf (tenmp >= a) {b = tenp; break;}
temp = (d - m | (m- 1);
if (tenmp >=c¢) {d = tenp; break;}

}
m=m>> 1;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list04#ch04list04

}

return b | d;

There are two ways in which we might propagate the bounds of inequalities (9) through the expression x & y:
algebraic and direct computation. The algebraic method uses DeMorgan's rule:

x&y==(=x| =y

Because we know how to propagate bounds precisely through or, and it is trivial to propagate them through not

minAND{a, b, e, d) = —maxOR(— b, —a. —d, —¢), and
maxAND(a, b, ¢, d) = —minOR(— 5, —a, —~d, —¢).

For the direct computation method, the code is very similar to that for propagating bounds through or. It is
shown in Figures 4-5 and 4-6.

Figure 4-5 Minimum value of x & y with bounds on x and y.

unsi gned m nAND(unsi gned a, unsigned b,
unsi gned c, unsigned d) {
unsigned m tenp;

m = 0x80000000;
while (m!= 0) {
If (~a & ~c & m {
temp = (a | M & -
If (tenmp <= b) {a
temp = (c | m & -
If (temp <= d) {c

t enp; break;}

N3 13

tenp; break;}

}
m=m>> 1;

}

return a & c;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list05#ch04list05
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list06#ch04list06

Figure 4-6 Maximum value of x & y with bounds on x and y.

unsi gned maxAND(unsi gned a, unsigned b,
unsi gned c¢, unsigned d) {
unsigned m tenp;

m = 0x80000000;
while (m!= 0) {
if (b &~d &m {
tenmp = (b &~m | (m- 1);
If (tenp >= a) {b = tenp; break;}
}
else if (~b &d & m {
temp = (d & ~m | (m- 1);
If (tenp >=c¢) {d = tenp; break;}

}
m=m>> 1,

}
return b & d;

The algebraic method of finding bounds on expressions in terms of the functions for and, or, and not works for
al the binary logical expressions except exclusive or and equivalence. The reason these two present a difficulty
is that when expressed in terms of and, or, and not, there are two terms containing x and y. For example, we are
tofind

min (x @ y) = min ({x&ﬂﬂ L (—x & p)).

d=X= b g=ax=h
tﬂ}ﬂd csysd

The two operands of the or cannot be separately minimized (without proof that it works, which actually it does)
because we seek one value of x and one value of y that minimizes the whole or expression.

The following expressions may be used to propagate bounds through exclusive or:

minXOR(a, b, ¢, d) = minAND(a, b, =d, —¢) | minAND(=b, —a, ¢, d),
maxXOR(a, b, ¢, d) = maxOR(0, maxAND(a, b, —d, —¢),
0, maxAND(= b, —a, ¢, d)).

It is straightforward to evaluate the minX OR and maxX OR functions by direct computation. The code for
minXOR is the same as that for minOR (Figure 4-3) except with thetwo br eak statements removed, and the

return value changedto a ”* ¢. The code for maxXOR is the same as that for maxOR (Figure 4-4) except with
the four linesunder the i f clause replaced with

tenmp = (b - m | (m- 1);

If (tenp >= a) b = tenp;

el se {
temp = (d - m | (m- 1);
I f (tenp >=c¢c) d = tenp;

and the return value changed to b ”* d.

Signed Bounds

If the bounds are signed integers, propagating them through logical expressionsis substantially more
complicated. The calculation isirregular if O iswithin therangeato b, or c to d. One way to calculate the lower
and upper bounds for the expression x | y isshown in Table4-1. A "+" entry means that the bound at the top of

the column is greater than or equal to 0, and a"-" entry means that it is less than 0. The column labelled
"minOR (signed)" contains expressions for computing the lower bound of x | y and the last column contains
expressions for computing the upper bound of x | y. One way to program thisisto construct a value ranging
from O to 15 from the sign bits of a, b, ¢, and d, and use a"switch" statement. Notice that not all values from O
to 15 are used, because it isimpossible to havea > b or ¢ > d.

For signed numbers, the relation

asxshbhes bEf=x=—a

holds, so the algebraic method can be used to extend the results of Table 4-1 to other logical expressions
(except for exclusive or and equivalence). We |leave this and similar extensions to others.

Table 4-1. Signed minOR And maxOR from Unsigned

d | minOR (signed) maxOR (signed)

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list03#ch04list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04list04#ch04list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04table01#ch04table01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch04lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch04table01#ch04table01

minOR(a, b, ¢, d)

maxOR(a, b, ¢, d)

a

-1

minOR(a, b, ¢, d)

maxOR(a, b, c, d)

-1

min(a, c)

maxOR(0, b, 0, d)

minOR(a, OXFFFFFFFF, c, d)

minOR(0, b, c, d)

minOR(a, b, ¢, d)

maxOR(a, b, ¢, d)

minOR(a, b, ¢, OXFFFFFFFF)

maxOR(a, b, O, d)

minOR(a, b, c, d)

maxOR(a, b, c, d)

Chapter 5. Counting Bits

Counting 1-Bits

Parity

Counting Leading O's

Counting Trailing 0's

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

5-1 Counting 1-Bits

The IBM Stretch computer (ca. 1960) had a means of counting the number of 1-bitsin aword as well asthe
number of leading O's. It produced these two quantities as a by-product of all logical operations! The former
function is sometimes called population count (e.g., on Stretch and the SPARCV9).

For machines that don't have this instruction, a good way to count the number of 1-bitsisto first set each 2-bit
field equal to the sum of the two single bits that were originally in the field, and then sum adjacent 2-bit fields,
putting the results in each 4-bit field, and so on. A more complete discussion of thistrick isin [RND]. The

method isillustrated in Figure 5-1, in which the first row shows a computer word whose 1-bits are to be
summed, and the last row shows the result (23 decimal).

Figure 5-1. Counting 1-bits, "divide and conquer" strategy.

torrritoooritoootrtolrrrtrrrotrrr1rrrnl

OO0 1 o]l ool ooaon o]l ool 1ol o0l an

goo00l0oloooo0o0lOo0O000l 1T OO0 000

{]U[}{]UU{]U[}[]UH]U[]'IHU{]{J[}[}UU{]{]E}[}II1{J|

UU[}{]!LIUUUU[]UUUUU[]UU{]UU[]UU{]UU1UI]]|

Thisis an example of the "divide and conquer" strategy, in which the original problem (summing 32 bits) is
divided into two problems (summing 16 bits), which are solved separately, and the results are combined
(added, in this case). The strategy is applied recursively, breaking the 16-bit fields into 8-bit fields, and so on.

In the case at hand, the ultimate small problems (summing adjacent bits) can all be donein parallel, and

http:// /?xmlid=0-201-91465-4/biblio#bib54
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05fig01#ch05fig01

combining adjacent sums can also be done in parallel in afixed number of steps at each stage. Theresult isan
algorithm that can be executed in log,(32) = 5 steps.

Other examples of divide and conquer are the well-known technique of binary search, a sorting method known
as quicksort, and a method for reversing the bits of aword, discussed on page 101.

The method illustrated in Figure 5-1 may be committed to C code as

X = (x & 0x55555555) + ((x >> 1) & 0x55555555);
X = (X & 0x33333333) + ((x >> 2) & 0x33333333);
X = (x & OxOFOFOFOF) + ((x >> 4) & 0xOFOFOFOF);
X = (X & OxOOFFOOFF) + ((x >> 8) & OxOOFFOOFF);
X = (X & OxO0000FFFF) + ((x >>16) & OxO0000FFFF);

Thefirstlineuses(x >> 1) & 0x55555555 rather than the perhaps more natural (X & OX AAAAAAAA)
>> 1 because the code shown avoids generating two large constants in aregister. This would cost an
instruction if the machine lacks the and not instruction. A similar remark applies to the other lines.

Clearly, the last and is unnecessary, and other and's may be omitted when there is no danger that afield's sum
will carry over into the adjacent field. Furthermore, there is away to code the first line that uses one fewer
instruction. This leads to the simplification shown in Figure 5-2, which executesin 21 instructions and is

branch-free.
Figure 5-2 Counting 1-bits in a word.

I nt pop(unsigned x) {
X =X - ((x > 1) & 0x55555555);
X = (X & 0x33333333) + ((x >> 2) & 0x33333333);
X = (x + (x >> 4)) & O0xOFOFOFOF;
X =X + (x > 8);
X = X + (x >> 16);
return x & 0Ox0000003F;

Thefirst assignment to X is based on the first two terms of the rather surprising formula

Equation 1

o= [gi |5

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05fig01#ch05fig01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list01#ch05list01

In Equation (1), we must have x =0. By treating x as an unsigned integer, Equation (1) can be implemented
with a sequence of 31 shift right immediate's of 1, and 31 subtract's. The procedure of Figure 5-2 uses the first
two terms of this on each 2-bit field, in paralldl.

Thereisasimple proof of Equation (1), which is shown below for the case of a 4-bit word. Let the word be
b3b2b1b0, where each bi =0or 1. Then,

it HE

s |

J1'2]+sz'iz+li;]'il+lbr'2”

(b3 22+ by 2V + b, - 27)
—(by - 21 + by - 20)
— (B - 2%

By(23 =22 220 220) 4 b, (22 =21 = 20) 4 b, (21 = 29) + b, (29)

= by+ b+ b+ by,

Alternatively, Equation (1) can be derived by noting that bit i of the binary representation of a nonnegative
integer x is given by

b= |2 |-2] 2
f 21’ - 2."+1

and summing thisfor i = 0 to 31. Work it out—the last term is 0 because x < 232,

Equation (1) generalizes to other bases. For basetenitis

sum_digits(x) = x -9 L |-9f [...
10 100

where the terms are carried out until they are 0. This can be proved by essentially the same technique used

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list01#ch05list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01

above.

A variation of the above algorithm is to use a base four analogue of Equation (1) as a substitute for the second
executable line of Figure 5-2:

X = X - 3*((x > 2) & 0x33333333)

This code, however, uses the same number of instructions as the line it replaces (six), and requires a fast
multiply-by-3 instruction.

Anagorithmin HAKMEM memo [HAK, item 169] counts the number of 1-bitsin aword by using the first

three terms of (1) to produce aword of 3-bit fields, each of which contains the number of 1-bits that wereinit.
It then adds adjacent 3-hbit fields to form 6-bit field sums, and then adds the 6-bit fields by computing the value
of the word modulo 63. Expressed in C, the algorithm is (the long constants are in octal)

I nt pop(unsigned x) {
unsi gned n;

n = (x > 1) & 033333333333; /1 Count bits in
X =X - n; /| each 3-bit
n=(n >> 1) & 033333333333; [l field.

X = X - n;

X = (x + (x > 3)) & 030707070707; // 6-bit sumns.

X = nodu(x, 63); /1 Add 6-bit suns.
return Xx;

The last line uses the unsigned modulus function. (It could be either signed or unsigned if the word length were
amultiple of 3). That the modulus function sums the 6-bit fields becomes clear by regarding the word X asan

integer written in base 64. The remainder upon dividing abase b integer by b- 1is, for b :_:"3, congruent mod b
to the sum of the digits and, of course, isless than b. Because the sum of the digitsin this case must be less than
or equal to 32, mod(x, 63) must be equal to the sum of the digits of x, which isto say equal to the number of 1-
bitsin the original x.

This algorithm requires only ten instructions on the DEC PDP-10, because that machine has an instruction for
computing the remainder with its second operand directly referencing a fullword in memory. On a basic RISC,
it requires about 13 instructions, assuming the machine has unsigned modulus as one instruction (but not
directly referencing a fullword immediate or memory operand). But it is probably not very fast, because
division isamost always a slow operation. Also, it doesn't apply to 64-bit word lengths by simply extending
the constants, although it does work for word lengths up to 62.

A variation on the HAKMEM algorithm is to use Equation (1) to count the number of 1'sin each 4-bit field,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list01#ch05list01
http:// /?xmlid=0-201-91465-4/biblio#bib25
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01

working on all eight 4-bit fields in parallel [Hay1]. Then, the 4-bit sums may be converted to 8-bit sumsin a
straightforward way, and the four bytes can be added with a multiplication by 0x01010101. This gives

I nt pop(unsigned x) {
unsi gned n;

n = (x > 1) & OX77777777, /1 Count bits in
X = X - n; /| each 4-bit
n=(n>>1) & OX77777777; [l field.

X = X - n;

n=(n>>1) & OX77777777;

X = X - n;

X = (x + (x >> 4)) & OxOFOFOFOF; [// Get byte suns.
X = x*0x01010101; /1l Add the bytes.
return x >> 24;

Thisis 19 instructions on the basic RISC. It works well if the machine is two-address, because the first six lines
can be done with only one move register instruction. Also, the repeated use of themask OX 77777777
permitsloading it into aregister and referencing it with register-to-register instructions. Furthermore, most of
the shifts are of only one position.

A quite different bit-counting method, illustrated in Figure 5-3, isto turn off the rightmost 1-bit repeatedly
[Weg, RND], until theresultisO. It isvery fast if the number of 1-bitsis small, taking 2 + 5pop(x) instructions.

Figure 5-3 Counting 1-bits in a sparsely populated word.

I nt pop(unsigned x) {

I nt n;
n = 0;
while (x '=0) {
n=n+1;
X =X & (x - 1);
}
return n;

This has adual algorithm that is applicable if the number of 1-bitsis expected to be large. The dual algorithm
keeps turning on the rightmost O-bit withx =X | (x + 1), until theresult isall 1's (-1). Then, it returns 32 -

n. (Alternatively, the original number x can be complemented, or n can beinitialized to 32 and counted down).

http:// /?xmlid=0-201-91465-4/biblio#bib26
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list02#ch05list02
http:// /?xmlid=0-201-91465-4/biblio#bib60
http:// /?xmlid=0-201-91465-4/biblio#bib54

A rather amazing algorithm is to rotate x left one position, 31 times, adding the 32 terms[MM]. The sum isthe
negative of pop(x)! That is,

Equation 2

:.:‘I T 5
pop(x) = —_E (x Z21),

i=1

where the additions are done modul o the word size, and the final sum isinterpreted as a two's-complement
integer. Thisisjust anovelty; it would not be useful on most machines because the loop is executed 31 times
and thus it requires 63 instructions plus the loop-control overhead.

To see why Equation (2) works, consider what happensto a single 1-bit of x. It gets rotated to all positions, and

when these 32 numbers are added, aword of all 1-bitsresults. But thisis-1. To illustrate, consider a 6-bit word
size and x = 001001 (binary):

001001 X
010010 x 2 |
100100 X2
001001 x 3
010010 x &4
100100 x5

Of coursg, rotate-right would work just as well.

The method of Equation (1) isvery similar to this "rotate and sum" method, which becomes clear by rewriting
(1) as

3

poplx) = x— 3 (x <= 1),

i=1

http:// /?xmlid=0-201-91465-4/biblio#bib47
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq02#ch05eq02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq01#ch05eq01

This gives adightly better algorithm than Equation (2) provides. It is better because it uses shift right, which is

more commonly available than rotate, and because the loop can be terminated when the shifted quantity
becomes 0. This reduces the loop-control code and may save afew iterations. The two algorithms are
contrasted in Figure 5-4.

Figure 5-4 Two similar bit-counting algorithms.

I nt pop(unsigned x) {

Int 1, sun
/'l Rotate and sum net hod /1 Shift right & subtract
sum = X; [/ sum = X;
for (i =1; i <= 31; i++) { // while (x !'=0) {
X = rotatel (x, 1); [/ X = X > 1;
sum = sum + X; [/ sum = sum - X;
} I}
return -sum [/ return sum

A lessinteresting algorithm that may be competitive with all the algorithms for pop(x) in this section isto have
atable that contains pop(x) for, say, x in the range 0 to 255. The table can be accessed four times, adding the
four numbers obtained. A branch-free version of the algorithm looks like this:

I nt pop(unsigned x) { /| Tabl e | ookup.
static char table[256] = {
Ol 11 11 21 17 2! 21 31 11 27 21 3! 21 31 37 41

4! 5’ 51 6’ 57 6! 6! 7’ 51 6, 61 7! 6’ 71 7, 8};

return tabl e[x & OxFF] +
table[(x > 8) & OxFF] +
table[(x >> 16) & OxFF] +
tabl e[(x >> 24)],;

Item 167 in [HAK] contains a short algorithm for counting the number of 1-bitsin a 9-bit quantity that is right-

adjusted and isolated in aregister. It works only on machines with registers of 36 or more bits. Below isa
version of that algorithm that works on 32-bit machines, but only for 8-bit quantities.

X = x * 0x08040201; // Make 4 copi es.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05eq02#ch05eq02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list03#ch05list03
http:// /?xmlid=0-201-91465-4/biblio#bib25

>> 3; /] So next step hits proper bits.
& 0x11111111; // Every 4th bit.

* 0x11111111; // Sumthe digits (each O or 1).
>> 28; /1 Position the result.

X X X X
I
X X X X

A version for 7-bit quantitiesis

X * 0x02040810; // Make 4 copies, |eft-adjusted.
= X & Ox11111111; // Every 4th bit.
X * 0x11111111; // Sumthe digits (each O or 1).
X >> 28; /1l Position the result.

X X X X
|

In these, the last two steps may be replaced with steps to compute the remainder of X modulo 15.

These are not particularly good; most programmers would probably prefer to use table lookup. The latter
algorithm above, however, has a version that uses 64-bit arithmetic, which might be useful for a 64-bit machine
that has fast multiplication. Its argument is a 15-bit quantity. (I don't believe thereisasimilar algorithm that
deals with 16-bit quantities, unlessit is known that not all 16 bitsare 1.) The datatypel ong | ong isaGNU
C extension [Stall], meaning twiceaslong asani nt , in our case 64 bits. The suffix ULL makesunsi gned

| ong | ong constants.

I nt pop(unsigned x) {
unsi gned |long | ong v;
y = x * 0x0002000400080010ULL;
y =y & 0x1111111212121211ULL;
y =y * 0x11111112121211211ULL;
y =y >> 60;
return vy,

Counting 1-Bits in an Array

The simplest way to count the number of 1-bitsin an array of fullwords, in the absence of the population count
instruction, isto use a procedure such as that of Figure 5-2 on page 66 on each word of the array, and simply

add the results.

Another way, which may be faster, isto use the first two executable lines of that procedure on groups of three
words of the array, adding the three partial results. Because each partial result has a maximum value of 4 in
each 4-bit field, adding three of these partial results gives aword with at most 12 in each 4-bit field, so no sum
overflowsinto the field to its left. Next, each of these partial results may be converted into aword having four
8-hit fields with a maximum value of 24 in each field, using

http:// /?xmlid=0-201-91465-4/biblio#bib57
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list01#ch05list01

x = (X & OXOFOFOFOF) + ((x >> 4) & OXxOFOFOFOF):

Asthese words are produced, they may be added until the maximum valueisjust less than 255; this would

allow summing ten such words (szﬁ”f 24 }-When ten such words have been added, the result may be
converted into aword having two 16-bit fields, with a maximum value of 240 in each, with

X = (X & OxO0FFOOFF) + ((x >> 8) & OxOOFFOOFF);

Lastly, 273 such words (L65535/240) can be added together until it is necessary to convert the sumto a
word consisting of just one 32-bit field, with

X = (x & OxXO000FFFF) + (x >> 16);

In practice, the instructions added for loop control significantly detract from what is saved, so it is probably
overkill to follow this procedure to the extent described. The code of Figure 5-5 applies the idea with only one

intermediate level. First, it produces words containing four 8-bit partial sums. Then, after these are added
together as much as possible, afullword sum is produced. The number of words of 8-bit fields that can be

added with no danger of overflowisLESf'fEJ = 3L
Figure 5-5 Counting 1-bits in an array.
I nt pop_array(unsigned Al], int n) {

int i, j, Iim
unsi gned s, s8, x;

s = 0;

for (i =0; i <n; 1 =1 + 31) {
lim= mn(n, 1 + 31);
s8 = 0;
for (j =1i; j <lim j++) {

= Al

=X - ((x >> 1) & 0x55555555);

= (x & 0x33333333) + ((x >> 2) & 0x33333333);
= (x + (x >> 4)) & OxOFOFOFOF;

s8 = s8 + Xx;

X X X X
I

(s8 & OxOOFFOOFF) + ((s8 >> 8) & OxOOFFOOFF);
= (x & Ox0000ffff) + (x >> 16);
= S + X;

n X X =
1

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list04#ch05list04

}

return s;

This agorithm was compared to the simple loop method by compiling the two procedures with GCC to atarget
machine that is very similar to the basic RISC. The result is 22 instructions per word for the simple method, and
17.6 instructions per word for the method of Figure 5-5, a savings of 20%.

Applications

An application of the population count function isin computing the "Hamming distance" between two bit
vectors, a concept from the theory of error-correcting codes. The Hamming distance is simply the number of
places where the vectors differ; that is,

dist(x,) = pop(x @ y).

See, for example, the chapter on error-correcting codesin [Dewd].

Another application isto allow reasonably fast direct-indexed access to a moderately sparse array A that is
represented in a certain compact way. In the compact representation, only the defined, or nonzero, elements of
the array are stored. There is an auxiliary bit string array bits of 32-bit words, which has a 1-bit for each index i
for which A[i] is defined. As a speedup device, thereis also an array of words bitsum such that bitsum[j] isthe
total number of 1-bitsin all the words of bits that precede entry j. Thisisillustrated below for an array in which
elements 0, 2, 32, 47, 48, and 95 are defined.

hits hitsum data
0x00000005 0 Al0]
0x00018001 2 A[2]
0x 80000000 5 A|32]
A[47]
A[48]
A[95]

Givenanindexi, 0 <i E95, the corresponding index sparse i into the data array is given by the number of 1-

bitsin array bits that precede the bit corresponding to i. This may be calculated as follows:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list04#ch05list04
http:// /?xmlid=0-201-91465-4/biblio#bib12

j =i > 5; Il j =il32.

k =i & 31; Il k =rem(i, 32);
mask = 1 << k; [/ A "1" at position k.
if ((bits[j] & mask) == 0) goto no_such el enent;
mask = mask - 1; /[l 1's to right of k.
sparse i = bitsunij] + pop(bits[j] & mask);

The cost of this representation istwo bits per element of the full array.

Still another application of the population function isin computing the number of trailing 0'sin aword (see
"Counting Trailing 0's" on page 84).

http:// /?xmlid=0-201-91465-4/ch05lev1sec4#ch05lev1sec4

5-2 Parity

The"parity" of astring refers to whether it contains an odd or an even number of 1-bits. The string has "odd
parity" if it contains an odd number of 1-bits; otherwise, it has "even parity."

Computing the Parity of a Word

Here we mean to produce a1l if aword x has odd parity, and a0 if it has even parity. Thisisthe sum, modulo 2,
of the bits of x—that is, the exclusive or of all the bits of x.

One way to compute thisis to compute pop(x); the parity is the rightmost bit of the result. Thisisfineif you
have the population count instruction, but if not, there are better ways than using the code for pop(x).

A rather direct method is to compute

-1
ye @ (x=10),

i=1

where n isthe word size, and then the parity of x is given by the rightmost bit of y. (Here $denotes exclusive
or, but for this formula, ordinary addition could be used.)

The parity may be computed much more quickly, for moderately large n, as follows (illustrated for n = 32; the
shifts can be signed or unsigned):

Equation 3

¥ o= X (3 == 1];
y =y~ (y == 2);
y =y "y »> 4);
y =y " (y == B);
y =y~ (y »=16);

This executesin ten instructions, as compared to 62 for the first method, even if the implied loop is completely
unrolled. Again, the parity bit is the rightmost bit of y. In fact, with either of these, if the shifts are unsigned,
then bit i of y gives the parity of the bits of x at and to the left of i. Furthermore, because exclusive or isits own

Inverse, X; $xj isthe parity of bitsi - 1 through j, for i Ej.

Thisisan example of the "parallel prefix," or "scan" operation, which has applicationsin parallel computing
[KRS; HS]. Given a sufficient number of processors, it can convert certain seemingly serial processes from O

(n) to O(log, n) time. For example, if you have an array of words and you wish to compute the exclusive or
scan operation on the entire array of bits, you can first use (3) on each word of the array, and then use
essentially the same technique on the array, doing exclusive or's on the words of the array. This takes more
elementary (word length) exclusive or operations than a simple left-to-right process, and hence it is not a good
ideafor a uniprocessor. But on a parallel computer with a sufficient number of processors, it can do thejob in O
(log, n) rather than O(n) time (where n is the number of wordsin the array).

A direct application of (3) isthe conversion of an integer to Gray code (see page 236).

If the code (3) is changed to use left shifts, the parity of the whole word x winds up in the leftmost bit position,
and bit i of y gives the parity of the bits of x at and to the right of position .

If rotate shift's are used, the result isaword of al 1'sif the parity of x isodd, and of al O'sif even.

The following method executes in nine instructions and computes the parity of x asthe integer 0 or 1 (the shifts
are unsigned).

X N (x > 1);
(x M (x > 2)) & 0x11111111;
x*0x11111111;
(x >> 28) & 1;

T X X X
1

After the second statement above, each hex digit of x is0 or 1, according to the parity of the bitsin that hex
digit. The multiply adds these digits, putting the sum in the high-order hex digit. There can be no carry out of
any hex column during the add part of the multiply, because the maximum sum of acolumnis8.

The multiply and shift could be replaced by an instruction to compute the remainder after dividing x by 15,
giving a (slow) solution in eight instructions, if the machine has remainder immediate.

Adding a Parity Bit to a 7-Bit Quantity
Item 167 in [HAK] contains a novel expression for putting even parity on a 7-bit quantity that is right-adjusted

and isolated in aregister. By this we mean to set the bit to the left of the seven bits, to make an 8-bit quantity
with even parity. Their codeisfor a 36-bit machine, but it works on a 32-bit machine as well.

modu((x + 0x10204081) & 0x888888FF, 1920)

http:// /?xmlid=0-201-91465-4/biblio#bib41
http:// /?xmlid=0-201-91465-4/biblio#bib30
http:// /?xmlid=0-201-91465-4/biblio#bib25

Here, modu(a, b) denotes the remainder of a upon division by b, with the arguments and result interpreted as
unsigned integers, "*" denotes multiplication modulo and the constant 1920 is 15 -27. Actually, this computes
the sum of the bits of x, and places the sum just to the left of the seven bits comprising x. For example, the
expression maps 0x0000007F to 0x000003FF, and 0x00000055 to 0x00000255.

Another ingenious formula from [HAK] is the following, which puts odd parity on a 7-bit integer:

modu((x + 0x00204081) | 0x3DB6DB00, 1152),

where 1152 = 9 - 27, To understand this, it helps to know that the powers of 8 are + 1 modulo 9. If the
0x3DB6DBO00 is changed to 0xBDB6DBO0, this formula applies even parity.

These methods are not practical on today's machines, because memory is cheap but division is still slow. Most
programmers would compute these functions with a simple table lookup.

Application

The parity operation is useful in multiplying bit matricesin GF(2) (in which the add operation is exclusive or).

http:// /?xmlid=0-201-91465-4/biblio#bib25

5-3 Counting Leading O's

There are several simple ways to count leading 0's with a binary search technique. Below is amodel that has
severa variations. It executesin 20 to 29 instructions on the basic RISC. The comparisons are
"logica" (unsigned integers).

iIf (x == 0) return(32);

n = 0;

I f (x <= Ox0000FFFF) {n = n +16; x = x <<16;}
I f (x <= OXO00FFFFFF) {n =n + 8;, x = x << 8;}
I f (x <= OXOFFFFFFF) {n =n + 4; x = x << 4;}
I f (x <= OX3FFFFFFF) {n = n + 2; x = x << 2;}
I f (x <= OX7FFFFFFF) {n =n + 1;}

return n;

One variation is to replace the comparisons with and's:

I f ((x & OXFFFFO000) == 0) {n = n +16; X X <<16;}
I f ((x & OxFFO00000) == 0) {n =n + 8; x = x << 8}

Another variation, which avoids large immediate values, is to use shift right instructions.

Thelasti f statement issimply adding 1 to n if the high-order bit of X is0, so an alternative, which saves a
branch instruction, is:

n=n+1- (x> 31);

The"+ 1" in this assignment can be omitted if n isinitialized to 1 rather than to 0. These observations lead to
the algorithm (12 to 20 instructions on the basic RISC) shown in Figure 5-6. A further improvement is possible
for the case in which X begins with a 1-bit: change thefirst lineto

if ((int)x <= 0) return (~x >> 26) & 32;
Figure 5-6 Number of leading zeros, binary search.

int nlz(unsigned x) {
I nt n;

If (x == 0) return(32);

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list05#ch05list05

n = 1;

If ((x > 16) == 0) {n = n +16; x = x <<16;}
If ((x > 24) ==0) {n=n+ 8, x = x << §;}
I1f ((x > 28) == 0) {n=n+4;, x =X << 4}
If ((x > 30) ==0) {n=n+2; x =Xx << 2;}

n=n- (x> 31);
return n;

Figure 5-7 illustrates a sort of reversal of the above. It requires fewer operations the more leading O's there are,
and avoids large immediate values and large shift amounts. It executesin 12 to 20 instructions on the basic

RISC.

Figure 5-7 Number of leading zeros, binary search, counting down.

i nt nlz(unsigned x) {
unsi gned v;

i nt n;

n = 32;

y = x >>16; if (y!'=0) {n=n-16; x =y;}
y =x>>8 if (y!=0) {n=n-28 x=y;}
y =x > 4; if (y!=0) {n=n-4;, x=y;}
y =x > 2; if (y'!'=0) {n=n-2; x =y;}
y =x>1; if (y!=0) returnn - 2;

return n - X;

This algorithm is amenable to a "table assist”: the last four executable lines can be replaced by

static char table[256] = {0,1,2,2,3,3,3,3,4,4,...,8);
return n - table[Xx];

Many algorithms can be aided by table lookup, but thiswill not often be mentioned here.

For compactness, this and the preceding algorithms in this section can be coded as loops. For example, the
algorithm of Figure 5-7 becomes the algorithm shown in Figure 5-8. This executesin 23 to 33 basic RISC
instructions, ten of which are conditional branches.

Figure 5-8 Number of leading zeros, binary search, coded as a loop.

I nt nlz(unsigned x) {

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list06#ch05list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list06#ch05list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list07#ch05list07

unsi gned v;

int n, c;
n = 32;
c = 16;
do {

y =x>¢; if (y!'=0) {nhn=n-o2c¢c x =y;}
c =c > 1;

} while (c !'= 0);

return n - X;

One can, of course, simply shift left one place at atime, counting, until the sign bit is on; or shift right one
place at atime until the word isall 0. These algorithms are compact and work well if the number of leading O's
is expected to be small or large, respectively. One can combine the methods, as shown in Figure 5-9. We
mention this because the technique of merging two algorithms and choosing the result of whichever one stops
first ismore generally applicable. It leads to code that runs fast on superscalar and VVLIW machines, because of
the proximity of independent instructions. (These machines can execute two or more instructions
simultaneously, provided they are independent.)

Figure 5-9 Number of leading zeros, working both ends at the same time.

int nlz(int x) {

int y, n;
n = 0;
y = X,

L: if (x <O0) return n;
if (y == 0) return 32 - n;

n=n+1;
X = X << 1;
y =y >>1;
goto L;

On the basic RISC, this executesin min(3 + 6nlz(x), 5 + 6(32 - nlz(x))) instructions, or 99 worst case.
However, one can imagine a superscalar or VLIW machine executing the entire loop body in one cycleif the
comparison results are obtained as a by-product of the shifts, or in two cycles otherwise, plus the branch
overhead.

It is straightforward to convert either of the algorithms of Figure 5-6 or Figure 5-7 to a branch-free counterpart.
Figure 5-10 shows a version that does the job in 28 basic RISC instructions.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list08#ch05list08
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list05#ch05list05
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list06#ch05list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list09#ch05list09

Figure 5-10 Number of leading zeros, branch-free binary search.

int nlz(unsigned x) {

int y, m n;
y = -(x >> 16); [l 1f left half of x is O,
m= (y > 16) & 16; // set n = 16. If left half
n =16 - m /1l is nonzero, set n = 0 and
X = X > m /[l shift x right 16.

/1 Now x is of the form 0000xxXxX.
y = x - 0x100; /[l If positions 8-15 are O,
m=(y >> 16) & 8; /[l add 8 to n and shift x left 8.
n=mn-+m
X = X << m
y = x - 0x1000; /1l |f positions 12-15 are O,
m=(y >> 16) & 4, // add 4 to n and shift x left 4.
n=n+ n
X = X << m
y = x - 0x4000; /1l 1f positions 14-15 are O,
m=(y >> 16) & 2; /[l add 2 to n and shift x left 2.
n=n+
X = X <<m
y = x >> 14; /l Set y =0, 1, 2, or 3.
m=vy & ~(y > 1); /[l Set m=0, 1, 2, or 2 resp.

return n + 2 - m

If your machine has the population count instruction, a good way to compute the number of leading zeros
functionisgivenin Figure 5-11. The five assignments to X may be reversed, or in fact done in any order. This

is branch-free and takes 11 instructions. Even if population count is not available, this algorithm may be useful.
Using the 21-instruction code for counting 1-bits given in Figure 5-2 on page 66, it executes in 32 branch-free

basic RISC instructions.

Figure 5-11 Number of leading zeros, right-propagate and count 1-bits.

int nlz(unsigned x) {
i nt pop(unsigned Xx);

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list10#ch05list10
http:// /?xmlid=0-201-91465-4/ch05lev1sec1#ch05list01

X:xl(x>>1),
X = x| (x >> 2);
X =X | (x > 4);
X =X | (x >> 8);
X =X | (x >>16);
return pop(~x);

Floating-Point Methods

The floating-point post-normalization facilities can be used to count leading zeros. It works out quite well with
| EEE-format floating-point numbers. The ideaisto convert the given unsigned integer to double-precision
floating-point, extract the exponent, and subtract it from a constant. Figure 5-12 illustrates a complete
procedure for this.

Figure 5-12 Number of leading zeros, using IEEE floating-point.

int nlz(unsigned k) {
uni on {
unsi gned aslnt[2];
doubl e asDoubl e;

asDoubl e = (double)k + 0.5;
n = 1054 - (aslnt[LE >> 20);
return n;

The code uses the C++ "anonymous union™ to overlay an integer with a double-precision floating-point
quantity. Variable LE must be 1 for execution on alittle-endian machine, and O for big-endian. The addition of

0.5, or some other small number, is necessary for the method to work when k = 0.

We will not attempt to assess the execution time of this code, because machines differ so much in their floating-
point capabilities. For example, many machines have their floating-point registers separate from the integer
registers, and on such machines data transfers through memory may be required to convert an integer to
floating-point and then move the result to an integer register.

The code of Figure 5-12 is not valid C or C++ according to the ANSI standard, because it refers to the same
memory locations as two different types. Thus, one cannot be sure it will work on a particular machine and
compiler. It does work with IBM's XLC compiler on AlX, and with the GCC compiler on AlX and on
Windows 2000, at all optimization levels (as of thiswriting, anyway). If the code is altered to do the overlay

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list11#ch05list11
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list11#ch05list11

defining with something like

xX = (double)k + 0.5;
n = 1054 - (*((unsigned *)&x + LE) >> 20);

it does not work on these systems with optimization turned on. This code, incidentally, violates a second ANSI
standard, namely, that pointer arithmetic can be performed only on pointers to array elements [Cohen]. The

failure, however, is due to the first violation, involving overlay defining.

[1]
In spite of the flakiness of thiscode, three variations are given below.

[1] The flakiness is due to the way C is used. The methods illustrated would be perfectly acceptable if coded in
machine language, or generated by a compiler, for a particular machine.

asDoubl e = (doubl e) k;
n = 1054 - (aslnt[LE] >> 20);
n (n & 31) + (n >> 9);

k = k & ~(k > 1);
asFloat = (float)k + 0.5f;
n = 158 - (aslnt >> 23);

k = k & ~(k > 1);
asFl oat = (fl oat)k;
n = 158 - (aslnt >> 23);
n=(n &31) + (n >> 6);

In the first variation, the problem with k = O isfixed not by a floating-point addition of 0.5, but by integer
arithmetic on the result n (which would be 1054, or Ox41E, if the correction were not done).

The next two variations use single-precision floating-point, with the "anonymous union" changed in an obvious
way. Here there is a new problem: Rounding can throw off the result when the rounding mode is either round to
nearest (almost universally used) or round toward +=. For round to nearest mode, the rounding problem

occurs for K in the ranges hexadecima FFFFFF80 to FFFFFFFF, 7FFFFFCO to 7FFFFFFF, 3FFFFFEQ to

3FFFFFFF, and so on. In rounding, an add of 1 carries all the way to the left, changing the position of the most
significant 1-bit. The correction steps used above clear the bit to the right of the most significant 1-bit, blocking
the carry.

The GNU C/C++ compiler has a unique feature that allows coding any of these schemes as a macro, giving in-
line code for the function references [Stall]. This feature allows statements, including declarations, to be
inserted in code where an expression is called for. The sequence of statements would usually end with an
expression, which is taken to be the value of the construction. Such a macro definition is shown below, for the

http:// /?xmlid=0-201-91465-4/biblio#bib8
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05footnote01#ch05footnote01
http:// /?xmlid=0-201-91465-4/biblio#bib57

first single-precision variation. (In C, it is customary to use uppercase for macro names.)
#define NLZ(k) \
({union {unsigned _asint; float _asFloat;}; \
unsi gned _kk = (k) & ~((unsigned)(k) >> 1); \
_asFloat = (float) _kk + 0.5f; \
158 - (_aslnt >> 23);})

The underscores are used to avoid name conflicts with parameter K; presumably, user-defined names do not
begin with underscores.

Relation to the Log Function

The"nlz" function is, essentially, the "integer log base 2" function. For unsigned x 7:0,

Ll:}gg{xjj = 31 —nlz(x), and
[log,(x) | = 32 —nlz(x - 1).

See also Section 11- 4, "Integer Logarithm,” on page 215.

Another closely related function is bitsize, the number of bits required to represent its argument as a signed
guantity in two's-complement form. We take its definition to be

1, x = —1or(,
2, x =-=2orl,
bitsize(x) 3, —4=xy=-Jor2sx=3,
itsize(x) = <
4, —REyr=s-5ord=x=7.
32, 2Ly 2] or 20 xy<231 -1,

From this definition, bitsize(x) = bitsize(- x - 1). But - x - 1 = =x, so an agorithm for bitsize is (where the shift
IS signed)

X = x N (x >> 31); /[l 1f (x <0 x =-x - 1;

http:// /?xmlid=0-201-91465-4/ch11lev1sec4#ch11lev1sec4

return 33 - nlz(x);

Applications

Two important applications of the number of leading zeros function are in simulating floating-point arithmetic
operations and in various division algorithms (see Figure 9-1 on page 141, and Figure 9-3 on page 152). The
instruction seems to have a miscellany of other uses.

It can be used to get the"x =y " predicate in only three instructions (see " Comparison Predicates’ on page 21),
and as an aid in computing certain elementary functions (see pages 205, 208, 214, and 218).

A novel application is to generate exponentially distributed random integers by generating uniformly
distributed random integers and taking "nlz" of the result [GLS1]. The result is O with probability 1/2, 1 with
probability 1/4, 2 with probability 1/8, and so on. Another application is as an aid in searching aword for a
consecutive string of 1-bits (or O-bits) of a certain length, a process that is used in some disk block allocation
algorithms. For these last two applications, the number of trailing zeros function could also be used.

http:// /?xmlid=0-201-91465-4/ch09lev1sec2#ch09list01
http:// /?xmlid=0-201-91465-4/ch09lev1sec4#ch09list03
http:// /?xmlid=0-201-91465-4/ch02lev1sec11#ch02lev1sec11
http:// /?xmlid=0-201-91465-4/biblio#bib19

5-4 Counting Trailing O's

If the number of leading zeros instruction is available, then the best way to count trailing O'sis, most likely, to
convert it to a count leading O's problem:

32 -nlz(—x & (x—1)).

If population count is available, adightly better method is to form a mask that identifies the trailing O's, and
count the 1-bitsin it [Hay2], such as

pop(—x & (x - 1)), and
32 —popix | —x).

Variations exist using other expressions for forming a mask that identifies the trailing zeros of x, such as those
given in Section 2-1,"Manipulating Rightmost Bits' on page 11. These methods are also reasonable even if the

machine has none of the bit-counting instructions. Using the algorithm for pop(x) given in Figure 5-2 on page
66, the first expression above executesin about 3 + 21 = 24 instructions (branch-free).

Figure 5-13 shows an algorithm that doesit directly, in 12 to 20 basic RISC instructions (for x ?50).

Figure 5-13 Number of trailing zeros, binary search.

I nt ntz(unsigned x) {
i nt n;

If (x == 0) return(32);
n = 1;

I f ((Xx & OXO000FFFF) == 0) {n = n +16; x = x >>16;}
I f ((x & OxO00000FF) == 0) {n=n+ 8; x = x >> 8;}
I f ((x & OxO0000000F) == 0) {n =n+ 4; x = x > 4;}
I f ((x & 0x00000003) ==0) {n=n+ 2; x =x > 2;}

return n - (x & 1);

Then + 16 can besimplifiedto 17 if that helps, and if the compiler is not smart enough to do that for you

http:// /?xmlid=0-201-91465-4/biblio#bib27
http:// /?xmlid=0-201-91465-4/ch02lev1sec1#ch02lev1sec1
http:// /?xmlid=0-201-91465-4/ch05lev1sec1#ch05list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list12#ch05list12

(this does not affect the number of instructions as we are counting them).

Figure 5-14 shows a variation that uses smaller immediate values and simpler operations. It executesin 12 to

21 basic RISC instructions. Unlike the above procedure, when the number of trailing O'sis small, the onein
Figure 5-14 executes alarger number of instructions, but also a larger number of "fall through" branches.

Figure 5-14 Number of trailing zeros, smaller immediate values.
I nt ntz(unsigned x) {

unsi gned v;

I nt n;

If (x == 0) return 32;

n = 31;

y = x <<16; if (y !'=0) {n=n-16; x =y;}
y =x<<8; if (y!'=0) {n=n-28, x=y;}
y =x << 4; if (y!'=0) {n=n-4 x =y;}
y =x<<2; if (y!'=0) {n=n-2;, x=y;}
y =x<<1; if (y!'=0) {n=n-1;}

return n;

Thelinejust abovether et ur n statement may alternatively be coded
n=n- ((x <<1) > 31);
which saves a branch, but not an instruction.

In terms of number of instructions executed, it is hard to beat the "search tree" [Aus2]. Figure 5-15 illustrates
this procedure for an 8-bit argument. This procedure executes in seven instructions for all paths except the last
two (return 7 or 8), which require nine. A 32-bit version would execute in 11 to 13 instructions. Unfortunately,
for large word sizes the program is quite large. The 8-bit version above is 12 lines of executable source code
and would compile into about 41 instructions. A 32-bit version would be 48 lines and about 164 instructions,
and a 64-bit version would be twice that.

Figure 5-15 Number of trailing zeros, binary search tree.

int ntz(char x) {
If (x & 15) {
if (x & 3) {
If (x & 1) return O;
el se return 1;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list13#ch05list13
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list13#ch05list13
http:// /?xmlid=0-201-91465-4/biblio#bib4
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list14#ch05list14

}

else if (x & 4) return 2;
el se return 3;

}

else if (x & 0x30) {
If (x & 0x10) return 4;
el se return 5;

}

else if (x & 0x40) return 6;

else if (x) return 7;

el se return 8;

If the number of trailing O's is expected to be small or large, then the ssmple loops below are quite fast. The left-
hand algorithm executesin 5 + 3ntz(x) and the right onein 3 + 3(32 - ntz(x)) basic RISC instructions.

Figure 5-16 Number of trailing zeros, simple counting loops.

i nt ntz(unsigned x) {

I nt n;

X =~ & (x - 1);

n = 0; [l n = 32;

while(x '= 0) { /[l while (x '=0) {
n=n+1; [/ n=n-1;
X = x > 1; /] X = X + X;

} I}

return n; [l return n;

It isinteresting to note that if the numbers x are uniformly distributed, then the average number of trailing 0'sis,
very nearly, 1.0. To see this, sum the products p;n;, where p; is the probability that there are exactly n; trailing

O's. Thatis,

AT S I D IR I

s=1.04]
4 b 16 = 32 64

)+

[}

2

=

l
o "
=2
¢

i ﬂlrﬂ 3

To evaluate this sum, consider the following array:

174 1/78 1716 1732 1/064
178 1716 1/32 1/64
1716 1/32 1/64

1732 1/64

| /64

The sum of each column isaterm of the seriesfor S. Hence Sis the sum of all the numbersin the array. The
sum of therows are

174+ 1/8+1/16+ 1732+ ... = 1/2

1/8+116+ 1732+ 164+ ... = 1/4

1716 +1/32+1/64+1/128+ ... = 1/8

and the sum of theseis1/2 + 1/4 + 1/8 + ... = 1. The absolute convergence of the original seriesjustifiesthe
rearrangement.

Sometimes, a function similar to ntz(x) is wanted, but a 0 argument is a special case, perhaps an error, that
should be identified with a value of the function that's easily distinguished from the "normal” values of the
function. For example, let us define "the number of factorsof 2 in x" to be

ntzix), x=0,

nfact2(x) =
) { -1, x=10.

This can be calculated from

31 —nlz(x & —x).

Applications

[GL S1] points out some interesting applications of the number of trailing zeros function. It has been named the

"ruler function" by Eric Jensen, because it gives the height of atick mark on aruler that's divided into halves,
guarters, eighths, and so on.

It has an application in R. W. Gosper's |oop-detection algorithm, which will now be described in some detail
because it is quite elegant and it does more than might at first seem possible.

Suppose a sequence X, X1, Xy, ... isdefined by X, 4 1 = f(X,)). If therange of f isfinite, the sequence is

necessarily periodic. That is, it consists of aleader X, Xy, ..., X, . 1 followed by acycle X, X, + 1, "'Xp+;\ 1

that repeats without limit (X, = X X and so on, where A isthe period of the cycle). Given

M+ IJ+1:XIJ+)\+1I

the function f, the loop-detection problem isto find the index p of the first element that repeats, and the period
A. Loop detection has applications in testing random number generators and detecting a cyclein alinked list.

One could save all the values of the sequence as they are produced, and compare each new element with all the
preceding ones. This would immediately show where the second cycle starts. But algorithms exist that are
much more efficient in space and time.

Perhaps the simplest isdueto R. W. Floyd [Knu2, sec. 3.1, prob. 6]. This algorithm iterates the process

x = f¥)
y= £

with x and y initialized to X,. After the nth step, x =X, andy = in. These are compared, and if equdl, itis
known that X, and in are separated by an integral multiple of the period A—that is, 2n - n=nisamultiple of

A. Then p can be determined by regenerating the sequence from the beginning, comparing X to X,,, then X; to
Xn+1, and so on. Equality occurs when X;, is compared to X;, + ;. Finally, A can be determined by regenerating
more elements, comparing X, to X, + 1, X, + 2, ... Thisagorithm requires only asmall and bounded amount of
space, but it evaluates f many times.

Gosper's algorithm [HAK, item 132; Knu2, Answers to Exercises for sec. 3.1, prob. 7] finds the period A, but
not the starting point p of thefirst cycle. Its main featureisthat it never backs up to reevaluate f, and it is quite

http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /?xmlid=0-201-91465-4/biblio#bib39
http:// /?xmlid=0-201-91465-4/biblio#bib25
http:// /?xmlid=0-201-91465-4/biblio#bib39

economical in space and time. It is not bounded in space; it requires atable of sizelog,(A) + 1, where A isthe

largest possible period. Thisisnot alot of space; for example, if it isknown apriori that A ':—:232, then 33
words suffice.

Gosper's algorithm, coded in C, is shown in Figure 5-17. This C function is given the function f being analyzed
and a starting value Xg. It returns lower and upper bounds on 1, and the period A. (Although Gosper's algorithm

cannot compute L, it can compute lower and upper bounds M, and M, such that M- M+ 1 ':—:max()\ -1,1).) The

2 |+ 1 of the elements of the

algorithm works by comparing X,,, forn=1, 2, ..., to asubset of size | log
sequence that precede X,. The elements of the subset are the closest preceding X; such that i + 1 endsin a 1-bit
(that is, i isthe even number preceding n), the closest preceding X; such that i + 1 endsin exactly one 0-bit, the

closest preceding X; such that i + 1 ends in exactly two O-bits, and so on.

Figure 5-17 Gosper's loop-detection algorithm.

void I d Gosper(int (*f)(int), int XO, int *nu_I,
Int *nmu_u, int *lanbda) {
int Xn, k, m kmax, n, lgl;

int T[33];
T[0] = XO;
Xn = XO;
for (n =1; ; n++) {
Xn = f(Xn);
kmax = 31 - nlz(n); /1 Floor(log2 n).

for (k = 0; k <= knmax; k++) {
If (Xn == T[K]) goto L;

}
T[ntz(n+l)] = Xn; /1 No match.
}
L:
[l Conmpute m= max{i | I < n and ntz(i+1l) = k}.

m= ((((n>>k) - 1) | 1) <<k) - 1,

*lTanbda = n - m

lgl =31 - nlz(*lanbda - 1); // Ceil(log2 | anbda) - 1.
*mi_u = m /'l Upper bound on nu.
*mu_l = m- max(1, 1 << Igl) + 1;// Lower bound on mu.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch05lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch05list16#ch05list16

Thus, the comparisons proceed as follows:

Xt Ay g1 X Xs, A Xz 0 Xy Xy Xy Ay
Xy 1 Xy X XNy : X X5, X3, X5 Xyt X2 X3 X5 X5
Xyt Xy X Xg 1 Xy X5, X5, X Xis 1 X X3 Xy X
Xyt Xy X Xy X+ Xy Xo, X3, X7 Xig + Xy Xigo Xpps Xgy X
Ng 1 Xy X Xy Xyt Xyge Ao X3, Xy X7 0 Xjge Xyae Xy Ay Ay

..-llrﬁ:X;I_,X::_.X} ,-11’|-_.:JL’|“,X¢,X“.XT ;]E'mrfm,ﬁ”,.-]['”,f?..f“-,

It can be shown that the algorithm always terminates with n somewhere in the second cycle—that is, with n <
+ 2\. See [Knu2] for further details.

The ruler function reveals how to solve the Tower of Hanoi puzzle. Number the n disksfrom Oto n - 1. At each
movek, ask goes from 1 to 2" - 1, move disk ntz(k) the minimum permitted distance to theright, in acircular
manner.

The ruler function can be used to generate a reflected binary Gray code (see Section 13-1 on page 235). Start
with an arbitrary n-bit word, and at each step k, ask goes from 1 to 2" - 1, flip bit ntz(k).

http:// /?xmlid=0-201-91465-4/biblio#bib39
http:// /?xmlid=0-201-91465-4/ch13lev1sec1#ch13lev1sec1

Chapter 6. Searching Words

Find First 0-Byte

Find First String of 1-Bits of a Given Length

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

6-1 Find First 0-Byte

The need for this function stems mainly from the way character strings are represented in the C language. They
have no explicit length stored with them,; instead, the end of the string is denoted by an all-0 byte. To find the
length of astring, a C program uses the "strlen” (string length) function. This function searches the string, from
left to right, for the O-byte, and returns the number of bytes scanned, not counting the 0-byte.

A fast implementation of "strlen" might load and test single bytes until aword boundary is reached, and then
load aword at atime into aregister, and test the register for the presence of a 0-byte. On big-endian machines,
we want afunction that returns the index of the first O-byte from the left. A convenient encoding is values from
0 to 3 denoting bytes 0 to 3, and avalue of 4 denoting that there is no O-byte in the word. Thisisthe value to
add to the string length, as successive words are searched, if the string length isinitialized to 0. On little-endian
machines, one wants the index of the first O-byte from the right end of the register, because little-endian
machines reverse the four bytes when aword is loaded into aregister. Specifically, we are interested in the
following functions, where "00" denotes a 0-byte, "nn" denotes a nonzero byte, and "xx" denotes a byte that
may be O or nonzero.

(), x = 00xxxxxx, 0, x = xxxxxx00,
1, x = nnxxxx, I, x = xxxx00nn,
zbytel(x) = 12, x = nnnn00xx, zbyter(x) = 42, x = xx00nnnn,
3, x = nnnnnndo, 3, x = 00nnnnnn,
4. x = nnnnnnnn. 4, x = nnnnnnnn.

Our first procedure for the find leftmost O-byte function, shown in Figure 6-1, simply tests each byte, in |eft-to-
right order, and returns the result when the first O-byte is found.

Figure 6-1 Find leftmost 0-byte, simple sequence of tests.

I nt zbytel (unsigned x) {
| f ((x > 24) == 0) return O
else if ((x & OxOOFFO000) == 0) return 1
else if ((x & OxO000FFOO) == 0) return 2;
else if ((x & OxO00000FF) == 0) return 3
el se return 4,

This executesin two to 11 basic RISC instructions, 11 in the case that the word has no 0-bytes (which isthe
important case for the "strlen” function). A very similar program will handle the problem of finding the

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list01#ch06list01

rightmost O-byte.

Figure 6-2 shows a branch-free procedure for this function. The ideais to convert each 0-byte to 0x80, and each

nonzero byte to 0x00, and then use number of leading zeros. This procedure executes in eight instructionsiif the
machine has the number of leading zeros and nor instructions. Some similar tricks are described in [Lamp].

Figure 6-2 Find leftmost 0-byte, branch-free code.

I nt zbytel (unsigned x) {

unsi gned v;

I nt n;

/1 Original byte: 00 80 other

y = (x & OX7TF7F7F7F) + OX7F7F7FT7F, [l 7TF 7F 1IXXXXXXX
y = ~(y | x| OX7F7F7F7F); [/ 80 00 00000000
n =nlz(y) > 3; [l n=0 ... 4 4if x
return n; /1 has no O-byte.

The position of the rightmost O-byte is given by the number of trailing O'sin the final value of y computed

above, divided by 8 (with fraction discarded). Using the expression for computing the number of trailing 0's by
means of the number of leading zeros instruction (see Section 5- 4, "Counting Trailing 0's," on page 84), this

can be computed by replacing the assignment to n in the procedure above with:
n=(32- nlz(~y &(y - 1))) >> 3;
Thisisa 12-instruction solution, if the machine has nor and and not.

In most situations on PowerPC, incidentally, a procedure to find the rightmost 0-byte would not be needed.
Instead, the words can be loaded with the load word byte-reverse instruction (I wbr x).

The procedure of Figure 6-2 is more valuable on a 64-bit machine than on a 32-bit one, because on a 64-bit

machine the procedure (with obvious modifications) requires about the same number of instructions (seven or
ten, depending upon how the constant is generated), whereas the technique of Figure 6-1 requires 23

instructions worst case.

If only atest for the presence of a 0-byte is wanted, then a branch on zero (or nonzero) can be inserted just after
the second assignment to y .

If the "nlZz" instruction is not available, there does not seem to be any really good way to compute the find first
0-byte function. Figure 6-3 shows a possibility (only the executable part of the code is shown).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /?xmlid=0-201-91465-4/biblio#bib42
http:// /?xmlid=0-201-91465-4/ch05lev1sec4#ch05lev1sec4
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list01#ch06list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list03#ch06list03

Figure 6-3 Find leftmost 0-byte, not using nl z.

/[l Original byte: 00 80 other

y = (x & OX7F7F7F7F) + OX7F7F7F7F; [/ 7F 7F 1XXXXXXX
y = ~(y | x| OX7F7F7F7F); /1 80 00 00000000
/| These steps nap:

if (y ==0) return 4 /1 00000000 ==> 4,
else if (y > OxO000FFFF) /] 80xxxxxx ==> 0,
return (y >> 31) ~ 1; /1 0080xxxx ==> 1,

el se /1 000080xx ==> 2,
return (y >> 15) " 3; // 00000080 ==> 3.

This executesin ten to 13 basic RISC instructions, ten in the all-nonzero case. Thus, it is probably not as good
asthe code of Figure 6-1, although it does have fewer branch instructions. It does not scale very well to 64-bit

machines, unfortunately.

There are other possibilities for avoiding the "nlz" function. The value of y computed by the code of Figure 6-3

consists of four bytes, each of which is either 0x00 or 0x80. The remainder after dividing such a number by
Ox7F isthe original value with the up-to-four 1-bits moved and compressed to the four rightmost positions.
Thus, the remainder ranges from 0 to 15 and uniquely identifies the original number. For example,

remu{0x80808080, 127) = 15,
remu({0x80000000, 127) = 8,
remu({0x00008080, 127) = 3, etc.

This value can be used to index atable, 16 bytesin size, to get the desired result.

Thus, the code beginningi f (y == 0) can be replaced with

static char table[16] = {4, 3, 2, 2, 1, 1, 1, 1,
o, 0, 0, 0, O, O, O, O};

return tabl e[y¥d27];

where y isunsigned. The number 31 can be used in place of 127, but with a different table.

These methods involving dividing by 127 or 31 arereally just curiosities, because the remainder function is apt
to require 20 cycles or more even if directly implemented in hardware. However, below are two more efficient
replacements for the code in Figure 6-3 beginningwithi f (y ==0) :

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list01#ch06list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list03#ch06list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list03#ch06list03

return tabl e[hopu(y, 0x02040810) & 15];
return tabl e[y*0x00204081 >> 28];

Here, hopu(a, b) denotesthe high-order 32 bits of the unsigned product of a and b. In the second line, we

assume the usual HLL convention that the value of the multiplication is the low-order 32 bits of the complete
product. This might be a practical method, if either the machine has afast multiply or the multiplication by
0x204081 is done by shift-and-add's. It can be done in four such instructions, as suggested by

P(1+27T4+2H4 4221y = (1 +27)(1 + 214,

Using this 4-cycle way to do the multiplication, the total time for the procedure comesto 13 cycles (7 to
computey, plus 4 for the shift-and-add's, plus 2 for the shift right of 28 and the table index), and of courseitis
branch-free.

These scale reasonably well to a 64-bit machine. For the "modulus® method, use

return tabl e[y¥%b11];

wheret abl e isof size 256, withvalues8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4, ... (il.e,tabl e[1] =
number of trailing O'sini).

For the multiplicative methods, use either

return tabl e[hopu(y, 0x0204081020408100) & 255]; or
return tabl e[(y*0x0002040810204081»56] ;

wheret abl e isof size 256, withvalues 8, 7, 6, 6,5,5,5,5,4,4,4,4,4,4,4,4,3,
The multiplication by 0x2 0408 1020 4081 can be done with

f— p(1+27)
et (1 +21)

which gives a 13-cycle solution.

All these variations using the table can, of course, implement the find rightmost O-byte function by ssmply
changing the datain the table.

If the machine does not have the nor instruction, the not in the second assignment to y in Figure 6-3 can be
omitted, in the case of a 32-bit machine, by using one of thethreer et ur n statements given above, with
table[i] =0,0,0,0,0,0,0,0,1,1,1,1,2, 2, 3, 4 This scheme does not quite work on a 64-bit machine.

Hereis an interesting variation on the procedure of Figure 6-2, again aimed at machines that do not have

number of leading zeros. Let a, b, ¢, and d be 1-bit variables for the predicates "the first byte of x is nonzero,"
"the second byte of x isnonzero," and so on. Then,

zbytel(x) = a+ab+abe+ abed.

The multiplications can be done with and's, leading to the procedure shown in Figure 6-4 (only the executable
code is shown).

Figure 6-4 Find leftmost 0-byte by evaluating a polynomial.

y = (X & OX7F7F7F7F) + OX7F7F7F7F;

y = vy | x; /'l Leading 1 on nonzero bytes.
tl = y >> 31; /[l t1 = a.

t2 = (y > 23) & t1; [l t2 = ab.

t3 = (y >> 15) & t2; /1l t3 = abc.

td = (y > 7) &t3; /1 t4 = abcd.

return tl +t2 + t3 + t4;

This comesto 15 instructions on the basic RISC, which is not particularly fast, but there is a certain amount of
parallelism. On a superscalar machine that can execute up to three arithmetic instructions in parallel, provided
they are independent, it comesto only ten cycles.

A simple variation of this does the find rightmost 0-byte function, based on

zbyter{x) = abed + bed +ed + d.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list03#ch06list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list04#ch06list04

(This requires one more and than the code of Figure 6-4.)

Some Simple Generalizations

Functions "zbytel" and "zbyter" can be used to search for a byte equal to any particular value, by first exclusive
or'ing the argument x with aword consisting of the desired value replicated in each byte position. For example,

to search x for an ASCII blank (0x20), search x $0x20202020 for aO-byte.

Similarly, to search for abyte position in which two words x and y are equal, search x $y for a 0-byte.
There is nothing special about byte boundariesin the code of Figure 6-2 and its variants. For example, to search

aword for a0-value in any of the first four bits, the next 12, or the last 16, use the code of Figure 6-2 with the
mask replaced by Ox77FF7FFF [PHQO]. (If afield lengthis 1, use a0 in the mask at that position.)

Searching for a Value in a Given Range

The code of Figure 6-2 can easily be modified to search for a byte in the range O to any specified value less than
128. To illustrate, the following code finds the index of the leftmost byte having value from 0 to 9:

y = (x & OX7F7F7F7F) + Ox76767676;

y =y | X

y =y | OX7TF7F7FT7F; /'l Bytes > 9 are OxFF.

y = ~V; /1 Bytes > 9 are 0x00,
/1l bytes <= 9 are 0x80.

n=nlz(y) > 3;

More generally, suppose you want to find the leftmost byte in aword that is in the range a to b, where the
difference between a and b isless than 128. For example, the uppercase letters encoded in ASCII range from
0x41 to Ox5A. To find the first uppercase letter in aword, subtract 0x41414141 in such away that the borrow
does not propagate across byte boundaries, and then use the above code to identify bytes having value from O to
0x19 (Ox5A - 0x41). Using the formulas for subtraction given in Section 2-17, "Multibyte Add, Subtract,

Absolute Value," on page 36, with obvious simplifications possible with y = 0x41414141, gives

d = (x | 0x80808080) - 0x41414141;

d = ~((x | OX7F7F7F7F) "~ d);

y = (d & OX7F7F7F7F) + Ox66666666;

y =y | d

y =y | OX7TF7F7FT7F; /'l Bytes not from 41-5A are FF.

y = ~y; /'l Bytes not from 41-5A are 00,
/'l bytes from 41-5A are 80.

n =nlz(y) > 3;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list04#ch06list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /?xmlid=0-201-91465-4/biblio#bib51
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list02#ch06list02
http:// /?xmlid=0-201-91465-4/ch02lev1sec17#ch02lev1sec17

For some ranges of values, smpler code exists. For example, to find the first byte whose value is 0x30 to 0x39
(adecimal digit encoded in ASCII), simply exclusive or the input word with 0x30303030 and then use the code
given aboveto search for avaluein therange 0 to 9. (This simplification is applicable when the upper and
lower limits have n high-order bitsin common, and the lower limit endswith 8- n 0's.)

These techniques can be adapted to handle ranges of 128 or larger with no additional instructions. For example,
to find the index of the leftmost byte whose value isin the range O to 137 (0x89), simply change theliney =y

| X toy =Yy &X inthe code above for searching for avalue from 0 to 9.

Similarly, changing theliney =y | dtoy =Yy &d inthe code for finding the leftmost byte whose valueisin
the range 0x41 to Ox5A causes it to find the leftmost byte whose value is in the range 0x41 to OxDA.

6-2 Find First String of 1-Bits of a Given Length

The problem hereisto search aword in aregister for the first string of 1-bits of a given length n or longer, and
to return its position, with some special indication if no such string exists. Variants are to return only the yes/no
indication, and to locate the first string of exactly n 1-bits. This problem has application in disk-allocation
programs, particularly for disk compaction (rearranging data on a disk so that all blocks used to store afile are
contiguous). The problem was suggested to me by Albert Chang, who pointed out that it is one of the uses for
the number of leading zeros instruction.

We assume here that the number of leading zeros instruction, or a suitable subroutine for that function, is
available.

An agorithm that immediately comes to mind isto first count the number of leading O's and skip over them by
shifting left by the number obtained. Then count the leading 1's by inverting and counting leading O's. If thisis
of sufficient length, we are done. Otherwise, shift |eft by the number obtained and repeat from the beginning.
This algorithm might be coded as shown below. If n consecutive 1-bits are found, it returns a number from O to
31, giving the position of the leftmost 1-bit in the leftmost such sequence. Otherwise, it returns 32 as a "not
found" indication.

int ffstri(unsigned x, int n) {

Int Kk, p;
p = 0; /1 Initialize position to return.
while (x '= 0) {
k = nlz(x); [l Skip over initial 0's
X = X << k; [l (if any).
p=p+Kk
k = nlz(~x); /1 Count first/next group of 1's.
I f (k >= n) /1 1f enough,
return p; /] return.
X = X << k; /1 Not enough 1's, skip over
p =p + k; /] them
}
return 32;

Thisalgorithm isreasonable if it is expected that the loop will not be executed very many times—for example,
if it isexpected that X will have long sequences of 1's and of 0's. This might very well be the expectation in the

disk-allocation application. Its worst-case execution time, however, is not very good; for example, about 178
full RISC instructions executed for x = 0x55555555 and n = 2.

An algorithm that is better in worst-case execution time is based on a sequence of shift left and and instructions.
To see how thisworks, consider searching for a string of eight or more consecutive 1-bits in a 32-bit word x.
This might be done as follows:

xe—x&{(x=1)
Xe—x&(x=2)
xe—x & (x<=4)

After the first assignment, the 1'sin x indicate the starting positions of strings of length 2. After the second
assignment, the 1'sin x indicate the starting positions of strings of length 4 (a string of length 2 followed by
another string of length 2). After the third assignment, the 1'sin x indicate the starting positions of strings of
length 8. Executing number of leading zeros on this word gives the position of the first string of length 8 (or
more), or 32 if none exists.

To develop an agorithm that works for any length n from 1 to 32, we will look at this alittle differently. First,
observe that the above three assignments may be done in any order. Reverse order will be more convenient. To
illustrate the general method, consider the case n = 10:

M

X e—x &(x =35)
(x, =12)
Xy =Xy 8 (X, =< 1)
()

-

R
L |
o

Thefirst statement shifts by n/2. After executing it, the problem is reduced to finding a string of five
consecutive 1-bitsin x;. This may be done by shifting left by L5/2] = 2~and'ing, and searching the result
for astring of length 3 (5 - 2). The last two statements identify where the strings of length 3 arein x,. The sum

of the shift amountsisawaysn - 1. The algorithm is shown in Figure 6-5. The execution time ranges from 3 to
36 full RISC instructions, as n ranges from 1 to 32.

If N is often moderately large, it is not unreasonable to unroll thisloop by repeating the loop body five times
and omitting thetest n > 1. (Five is always sufficient for a 32-bit machine.) This gives a branch-free algorithm
that runsin a constant time of 20 instructions executed (the last assignment to N can be omitted). Although for
small values of n the three assignments are executed more than necessary, the result is unchanged by the extra

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list05#ch06list05

steps because variable n sticks at the value 1, and for this value the three steps have no effect on X or n. The

unrolled version is faster than the looping version for n -'25, in terms of number of instructions executed.

Figure 6-5 Find first string of n 1's, shift-and-and sequence.

int ffstril(unsigned x, int n) {
i nt s;

while (n > 1) {
s = n >> 1;
X = X & (X << 8);
n=n- s;

}

return nl z(x);

A string of exactly n 1-bits can be found in six more instructions (four if and not is available). The quantity x
computed by the algorithm of Figure 6-5 has 1-bits wherever a string of length n or more 1-bits begins. Hence,

using the final value of x computed by that algorithm, the expression

x & —I.{I';-!-'r;:- ” & —l{.‘i.'-:‘;{ 1}

contains a 1-bit wherever the final x contains an isolated 1-bit, which isto say wherever the original x began a
string of exactly n 1-bits.

The algorithm is also easily adapted to finding strings of length n that begin at certain locations. For example,
to find strings that begin at byte boundaries, simply and the final x with 0x80808080.

It can be used to find strings of O-bits either by complementing x at the start, or by changing the and'sto or's
and complementing x just before invoking "nlz." For example, below is an algorithm for finding the first
(leftmost) 0-byte (see Section 6-1, "Find First 0-Byte," on page 91, for a precise definition of this problem).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch06lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch06list05#ch06list05
http:// /?xmlid=0-201-91465-4/ch06lev1sec1#ch06lev1sec1

xex | (x==4)
xe—x | (x=2)
xie—x | (x=1)
x « 0x7F7F7F7F | x

p ¢ nlz(—x) =3

This executesin 12 instructions on the full RISC (not as good as the algorithm of Figure 6-2 on page 92, which
executes in eight instructions).

http:// /?xmlid=0-201-91465-4/ch06lev1sec1#ch06list02

Chapter 7. Rearranging Bits and Bytes

Reversing Bits and Bytes

Shuffling Bits

Transposing a Bit Matrix

Compress, or Generalized Extract

General Permutations, Sheep and Goats Operation

Rearrangements and | ndex Transformations

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec5&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

7-1 Reversing Bits and Bytes
By "reversing bits' we mean to reflect the contents of aregister about the middle so that, for example,

rev(0x01234567) = 0xE6A2C480.

By "reversing bytes' we mean asimilar reflection of the four bytes of aregister. Byte reversal is a necessary
operation to convert data between the "little-endian” format used by DEC and Intel and the "big-endian” format
used by most other manufacturers.

Bit reversal can be done quite efficiently by interchanging adjacent single bits, then interchanging adjacent 2-
bit fields, and so on, as shown below [Ausl]. These five assignment statements can be executed in any order.

= (X & 0x55555555) <<
= (x & 0x33333333) <<

1 (X & OXAAAAAAAA) >>
2
& OxOFOFOFOF) << 4
8
6

I

| (x & 0xCCccccee) >>
| (x & OxFOFOFOF0) >>
I
|

= (x & OxO0FFOOFF) <<
= (x & OxO0000FFFF) << 1

(x & OxFFOOFFOO0) >>
(x & OxFFFFO000) >> 1

X X X X X
I
—~
X
oA~ NE

A small improvement results on most machines by using fewer distinct large constants and doing the last two
assignments in amore straightforward way, asis shown in Figure 7-1 (30 basic RISC instructions, branch-free).

Figure 7-1 Reversing bits.

unsi gned rev(unsigned x) {
X = (X & 0x55555555) << 1 | (x >> 1) & 0x55555555;
X = (X & 0x33333333) << 2 | (x >> 2) & 0x33333333;
X = (X & OXOFOFOFOF) << 4 | (x >> 4) & OxOFOFOFOF
X = (x << 24) | ((x & OxFFO0) << 8) |
((x >> 8) & OxFFO0) | (x >> 24);
return Xx;

The last assignment to x in this code does byte reversal in nine basic RISC instructions. If the machine has
rotate shifts, however, this can instead be done in seven instructions with

x = ((x & 0x00FF00FF) *£8) | ((x % 8) & 0x00FF00FF).

http:// /?xmlid=0-201-91465-4/biblio#bib3
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list01#ch07list01

PowerPC can do the byte-reversal operation in only three instructions [Hay1]: arotate left of 8, which positions
two of the bytes, followed by two "rlwimi"” (rotate left word immediate then mask insert) instructions.

Generalized Bit Reversal

[GL S1] suggests that the following sort of generalization of bit reversal, which he calls "flip," isagood
candidate to consider for a computer's instruction set:

if (k & 1) x = (x & 0x55555555) << 1 | (x & OXAAAAAAAA) >> 1.
if (k & 2) x = (x & 0x33333333) << 2 | (x & OxCCCCCCCO) >> 2
if (k & 4) x = (x & OXOFOFOFOF) << 4 | (x & OxFOFOFOFQ) >> 4:
if (k & 8) x = (x & OXOOFFOOFF) << 8 | (x & OxFFOOFF00) >> 8:
if (k & 16) x = (x & OXO000FFFF) << 16 | (x & OxFFFF0000) >> 16:

(The last two and operations can be omitted.) For k = 31, this operation reverses the bitsin aword. For k = 24,
it reversesthe bytesin aword. For k = 7, it reverses the bits in each byte, without changing the positions of the
bytes. For k = 16, it swaps the left and right halfwords of aword, and so on. In general, it moves the bit at

position mto position m $k. It can be implemented in hardware very similarly to the way arotate shifter is
usually implemented (five stages of MUX's, with each stage controlled by abit of the shift amount k).

Bit-Reversing Novelties

Item 167 in [HAK] contains rather esoteric expressions for reversing 6-, 7-, and 8-bit integers. Although these

expressions are designed for a 36-bit machine, the one for reversing a 6-bit integer works on a 32-bit machine,
and those for 7- and 8-bit integers work on a 64-bit machine. These expressions are as follows:

6-bit: remu((x = 0x00082082) & 0x01122408, 255)
7-bit: remu((x = 0x40100401) & 0x4 42211008, 255)
2-bit: remu((x = 0x2 02020202) & 0x108 84422010, 1023)

Theresult of all theseisa"clean" integer—right-adjusted with no unused high-order bits set.

In all these cases the "remu" function can instead be “rem" or "mod," because its arguments are positive. The
remainder function is simply summing the digits of a base 256 or base 1024 number, much like casting out
nines. Hence it can be replaced with a multiply and a shift right. For example, the 6-bit formula has the

http:// /?xmlid=0-201-91465-4/biblio#bib26
http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /?xmlid=0-201-91465-4/biblio#bib25

following alternative on a 32-bit machine (the multiplication must be modulo 232):

t (x = 0x00082082) & 0x01122408
(f + 0x01010101) = 24

These formulas are limited in their utility because they involve a remaindering operation (20 cycles or more)
and/or some multiplications, as well as loading of large constants. The formulaimmediately above requires ten
basic RISC instructions, two of which are multiply's, which amounts to about 20 cycles on a present-day RISC.
On the other hand, an adaptation of the code of Figure 7-1 to reverse 6-bit integers requires about 15

instructions, and probably about 9 to 15 cycles, depending on the amount of instruction-level parallelism in the
machine. These techniques, however, do give compact code. Below are afew more techniques that might
possibly be useful, al for a32-bit machine. They involve a sort of double application of theideafrom [HAK],

to extend the technique to 8- and 9-bit integers on a 32-bit machine.

Thefollowing isaformulafor reversing an 8-bit integer:

§ e (x» 0x02020202) & 0x84422010
[(x=8)& 0x00000420
remuis +r, 1023)

Here the "remu” cannot be changed to a multiply and shift. (Y ou have to work these out, and look at the bit
patterns, to see why.)

Hereisasimilar formulafor reversing an 8-bit integer, which isinteresting because it can be smplified quite a
bit:

5 — (x = 0x00020202) & 0x01044010
f— (x = 0x00080808) & O0x02088020
remu(s + £, 4095)

The simplifications are that the second product is just a shift left of the first product, the last mask can be
generated from the second with just one instruction (shift), and the remainder can be replaced by a multiply and

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list01#ch07list01
http:// /?xmlid=0-201-91465-4/biblio#bib25

shift. It simplifiesto 14 basic RISC instructions, two of which are multiply's:

i x = 0x00020202
m «— 0x01044010

Se—nu&m

te—(=<2)& (m=1)

(0x01001001 = (s + 1)) -5 24

Thefollowing isaformulafor reversing a 9-hit integer:

§ ¢ (x % 0x01001001) & 0x84108010
[(x = 0x00040040) & 0x0084 1080
remul(s +f, 1023)

The second multiplication can be avoided because the product is equal to the first product shifted right six
positions. The last mask is equal to the second mask shifted right eight positions. With these simplifications,
this requires 12 basic RISC instructions, including the one multiply and one remainder. The remainder
operation must be unsigned, and it cannot be changed to a multiply and shift.

The reader who studies these marvels will be able to devise similar code for other bit-permuting operations. As
asimple (and artificial) example, suppose it is desired to extract every other bit from an 8-bit quantity, and
compress the four bitsto theright. That is, the desired transformation is

0000 0000 0000 0000 0000 0000 abcd efgh ==>
0000 0000 0000 0000 0000 0000 0000 bhdfh

This may be computed as follows:

e (x+0x01010101) & 0x40100401
(¢ 0x08040201)-% 27

On most machines, the most practical way to do all these operations is by indexing into atable of 1-byte (or 9-
bit) integers.

Incrementing a Reversed Integer

The Fast Fourier Transform (FFT) algorithm employs an integer i and its bit reversal rev(i) in aloop in which i
isincremented by 1 [PB]. Straightforward coding would increment i and then compute rev(i) on each loop
iteration. For small integers, computing rev(i) by table lookup isfast and practical. For large integers, however,
table lookup is not practical and, as we have seen, computing rev(i) requires some 29 instructions.

If table lookup cannot be used, it is more efficient to maintain i in both normal and bit-reversed forms,
incrementing them both on each loop iteration. This raises the question of how best to increment an integer that
isin aregister in reversed form. To illustrate, on a 4-bit machine we wish to successively step through the
values (in hexadecimal)

0O, 8 4, C 2, A 6, E, 1, 9, 5, b 3, B, 7, F.

In the FFT algorithm, i and its reversal are both some specific number of bitsin length, almost certainly less
than 32, and they are both right-justified in the register. However, we assume here that i is a 32-bit integer.
After adding 1 to the reversed 32-hit integer, a shift right of the appropriate number of bits will make the result
usable by the FFT algorithm (both i and rev(i) are used to index an array in memory).

The straightforward way to increment areversed integer isto scan from the left for the first 0-bit, set it to 1, and
set al bitsto the left of it (if any) to 0's. One way to code thisis

unsi gned x, m

m = 0x80000000;
X =X *m
If ((int)x >= 0) {
do {
m=m>> 1;
X =X ~'m
} while (x < m;

This executesin three basic RISC instructions if X begins with a 0-bit, and four additional instructions for each
loop iteration. Because X begins with a O-bit half the time, with 10 (binary) one-fourth of the time, and so on,
the average number of instructions executed is approximately

http:// /?xmlid=0-201-91465-4/biblio#bib50

(]
e

Il
e
A,
|

Il
=~

(In the second line we added and subtracted 1, with thefirst 1 intheform /2 + 1/4 + 1/8 + 1/16 + This
makes the series similar to the one analyzed on page 86.) The number of instructions executed in the worst
case, however, is quite large (131).

If number of leading zerosis available, adding 1 to areversed integer may be done as follows:

First execute: § ¢ nlz(—x)
and then either: x « x @ (0x80000000 = §)
or: x — ((x =< 5)+ 0x80000000) = s

Either method requiresfive full RISC instructions and, to properly wrap around from OxFFFFFFFF to O,
requires that the shifts be modulo 64. (These formulas fail in this respect on the Intel x86 machines, because the
shifts are modulo 32.)

7-2 Shuffling Bits

Another important permutation of the bits of aword is the "perfect shuffle" operation, which has applicationsin
cryptography. There are two varieties, called the "outer" and "inner" perfect shuffles. They both interleave the
bits in the two halves of aword in amanner similar to a perfect shuffle of adeck of 32 cards, but they differ in
which card is allowed to fal first. In the outer perfect shuffle, the outer (end) bits remain in the outer positions,
and in the inner perfect shuffle, bit 15 moves to the left end of the word (position 31). If the 32-bit word is
(where each letter denotes a single bit)

abcd efgh ijkl mop ABCD EFCGH | JKL MNOP,

then after the outer perfect shuffleitis

aAbB cCdD eEf F gGhH i1jJ KKI L nmvhN oQpP,

and after the inner perfect shuffleitis

AaBb CcDd EeFf GgHh 1iJj KkLI MwNn OoPp.

Assume the word size Wis a power of 2. Then the outer perfect shuffle operation can be accomplished with
basic RISC instructions in log,(W/2) steps, where each step swaps the second and third quartiles of

successively smaller pieces [GLS1]. That is, a 32-bit word is transformed as follows:

abcd efgh ijkl mop ABCD EFCGH | JKL MNOP
abcd efgh ABCD EFGH ij kl mop | JKL MNOP
abcd ABCD efgh EFGH ijkl IJKL mMmop MNOP
abAB cdCD ef EF ghGH ij1J kIl KL mIMN opOP
aAbB cCdD eEf F gGhH il jJ kKI L mvhN oQpP

Straightforward code for thisis

& O0x0000FF00) <<

(x >> 8) & Ox0000FF00 |
= (x & OxO0FO00F0) <<
(x

>> 4) & 0x00F000F0 |
>> 2) & 0x0C0C0C0C |
>> 1) & 0x22222222 |

& OxFFOOOOFF;
& OxFOOFFOOF;
& 0xC3C3C3C3;
& 0x99999999;

& 0x000C0COC) <<
& 0x22222222) <<

X X X X
|

R N B~ OO

X X X X

X X X X

AN NN N

which requires 42 basic RISC instructions. This can be reduced to 30 instructions, although at an increase from
17 to 21 cycles on amachine with unlimited instruction-level parallelism, by using the exclusive or method of
exchanging two fields of aregister (described on page 40). All quantities are unsigned:

http:// /?xmlid=0-201-91465-4/biblio#bib19

t = (x " (x >> 8)) & OxO0000FF00; x =x "t ™ (t << 8);
t = (x ™ (x > 4)) & OxO0FOOOFO; x =x "t N (t << 4);
t = (x M (x > 2)) & 0x0C0COCAC, x =x "t N (t << 2);
t = (x N (x > 1)) & 0x22222222; x =x Mt N (t << 1);

The inverse operation, the outer unshuffle, is easily accomplished by performing the swaps in reverse order:

t = (x N (x > 1)) & 0x22222222; x =x Mt N (t << 1);
t = (x N (x > 2)) & 0x0Q0CCOC, x =x Mt N (t << 2);
t = (x N (x > 4)) & OxO0FOOOFO; x =x "t N (t << 4);
t = (x " (x >> 8)) & OxO0000FF00; x =x "t ™ (t << 8);

Using only the last two steps of either of the above two shuffle sequences shuffles the bits of each byte
separately. Using only the last three steps shuffles the bits of each halfword separately, and so on. Similar
remarks apply to unshuffling, except by using the first two or three steps.

To get the inner perfect shuffle, prepend to these sequences a step to swap the left and right halves of the
register:

X = (x >>16) | (x << 16);

(or use arotate of 16 hit positions). The unshuffle sequence can be similarly modified by appending this line of
code.

Altering the transformation to swap the first and fourth quartiles of successively smaller pieces produces the bit
reversal of the inner perfect shuffle.

Perhaps worth mentioning is the special case in which the left half of theword X isall 0. In other words, we
want to move the bits in the right half of X to every other bit position—that is, to transform the 32-bit word

0000 0000 0000 0000 ABCD EFCGH I JKL MNOP

to

OAOB 0COD OEOF O0O&H 0Ol 0J OKOL OMIN OQOP.

The outer perfect shuffle code can be simplified to do thistask in 22 basic RISC instructions. The code below,
however, doesit in only 19 basic RISC instructions, at no cost in execution time on a machine with unlimited
instruction-level parallelism (12 cycles with either method). This code does not require that the left half of word
X beinitialy cleared.

X = ((x & OxFF00) << 8) | (x & OxOO0FF);

X = ((x << 4) | x) & OxOFOFOFOF;
X = ((x << 2) | x) & 0x33333333;
X = ((x << 1) | x) & 0x55555555;

Similarly, for the inverse of this"half shuffle" operation (a special case of compress; see page 116), the outer
perfect unshuffle code can be simplified to do the task in 26 or 29 basic RISC instructions, depending on
whether or not an initial and operation is required to clear the bits in the odd positions. The code below,
however, doesit in only 18 or 21 basic RISC instructions, and with less execution time on a machine with
unlimited instruction-level parallelism (12 or 15 cycles).

X & 0x55555555; [l (If required.)
((x >> 1) | x) & 0x33333333;
((x > 2) | x) & OxOFOFOFOF;
((x > 4) | x) & OxO0OFFOOFF;
((x > 8) | x) & OxO000FFFF;

X X X X X
I

7-3 Transposing a Bit Matrix

The transpose of a matrix A is amatrix whose columns are the rows of A and whaose rows are the columns of A.
Here we consider the problem of computing the transpose of a bit matrix whose elements are single bits that are
packed eight per byte, with rows and columns beginning on byte boundaries. This seemingly ssimple
transformation is surprisingly costly in instructions executed.

On most machines it would be very slow to load and store individual bits, mainly due to the code that would be
required to extract and (worse yet) to store individual bits. A better method is to partition the matrix into 8x8
submatrices, load each 8x8 submatrix into registers, compute the transpose of the submatrix in registers, and
then store the 8x8 result in the appropriate place in the target matrix. This section first discusses the problem of
computing the transpose of the 8x8 submatrix.

It doesn't matter whether the matrix is stored in row-major or column-major order; computing the transpose
consists of the same operationsin either event. Assuming for discussion that it'sin row-major order, an 8x8
submatrix is loaded into eight registers with eight load byte instructions, addressing a column of the source
matrix. That is, the addresses referenced by the load byte instructions are separated by multiples of the source
matrix width in bytes. After the transpose of the 8x8 submatrix is computed, it is stored in a column of the
target matrix—that is, it is stored with eight store byte instructions into locations separated by multiples of the
width of the target matrix in bytes (which is different from the width of the source matrix if the matrices are not
sguare). Thus, we are given eight 8-bit quantities right-justified in registers a0, al, ..., a7, and wewish to
compute eight 8-bit quantities right-justified in registersb0, b1, ..., b7, for use in the store byte instructions.

Thisisillustrated below, where each digit and letter represents a single bit. Notice that we consider the main
diagonal to run from bit 7 of byte O to bit O of byte 7. Some readers with a little-endian background may be
accustomed to thinking of the main diagonal as running from bit O of byte O to bit 7 of byte 7.

a0 = 0123 4567 bO = 08go wWEMJ
al = 89ab cdef bl = 19hp xFNV
a2 = ghij klm b2 = 2aiq yGOW
a3 = opgr stuv ==> b3 = 3bjr zHPX
a4 = wxyz ABCD b4 = 4cks Al QY
ab = EFGH | JKL b5 = 5dIt BIRZ
a6 = MNOP QRST b6 = 6enmu CKS$
a7 = UWK YZ$. b7 = 7fnv DLT.

The straightforward code for this problem isto select and place each result bit individually, asfollows. The
multiplications and divisions represent left and right shifts, respectively.

b0 = (a0 & 128) | (al & 128)/2 | (a2 & 128)/4 | (a3 & 128)/8 |
(a4 & 128)/16 | (a5 & 128)/32 | (a6 & 128)/64 |
(a7)/ 128:

bl = (a0 & 64)*2 | (al & 64) | (a2 & 64)/2 | (a3 & 64)/4 |

(a4 & 64)/8 | (a5 & 64)/16 | (a6 & 64)/32 | (a7 & 64)/64;
b2 = (a0 & 32)*4 | (al & 32)*2 | (a2 & 32) | (a3 & 32)/2 |
(a4 & 32)/4 | (a5 & 32)/8 | (a6 & 32)/16 | (a7 & 32)/32;
b3 = (a0 & 16)*8 | (al & 16)*4 | (a2 & 16)*2 | (a3 & 16) |
(a4 & 16)/2 | (a5 & 16)/4 | (a6 & 16)/8 | (a7 & 16)/16;
b4 = (a0 & 8)*16 | (al & 8)*8 | (a2 & 8)*4 | (a3 & 8)*2 |
(a4 & 8) | (a5 & 8)/2 | (a6 & 8)/4 | (a7 & 8)/8;
b5 = (a0 & 4)*32 | (al & 4)*16 | (a2 & 4)*8 | (a3 & 4)*4 |
(a4 & 4)*2 | (a5 & 4) | (a6 & 4)/2 | (a7 & 4)]4;
b6 = (a0 & 2)*64 | (al & 2)*32 | (a2 & 2)*16 | (a3 & 2)*8 |
(a4 & 2)*4 | (a5 & 2)*2 | (a6 & 2) | (a7 & 2)/2;
b7 = (a0)*128| (al & 1)*64 | (a2 & 1)*32 | (a3 & 1)*16|
(a4 & 1)*8 | (a5 & 1)*4 | (a6 & 1)*2 | (a7 & 1);

This executes in 174 instructions on most machines (62 and's, 56 shift's, and 56 or's). The or's can of course be
add's. On PowerPC it can be done, perhaps surprisingly, in 63 instructions (seven move register's and 56 rotate
left word immediate then mask insert's). We are not counting the load byte and store byte instructions, nor their
addressing code.

Although there does not seem to be areally great algorithm for this problem, the method to be described beats
the straightforward method by more than afactor of 2 on abasic RISC machine.

First, treat the 8x8-bit matrix as 16 2x2-bit matrices, and transpose each of the 16 2x2-bit matrices. Second,
treat the matrix as four 2x2 submatrices whose elements are 2x2-bit matrices and transpose each of the four 2x2
submatrices. Finally, treat the matrix as a 2x2 matrix whose elements are 4x4-bit matrices, and transpose the
2x2 matrix. These transformations are illustrated below.

0123
89ab
ghi]
opqr

4567
cdef
kl mm
st uv

ABCD
I JKL

QRST
YZ$.

WXY Z
EFCH
MNOP
UVW\K

082a 4co6e
193b 5d7f
goi q ksnu
hpjr [tnv

WwEyG Al CK
xFzH BJDL
MUOW QYS$
NVPX RZT.

08go 4cks
19hp 5dI t
2ai q 6enu
3bjr 7fnv

WEMJ Al QY
XFNV BIJRZ
y GOW CKS$
zHPX DLT.

08go
19hp
2ai q
3bjr

WEMU
XFNV

zHPX

4cks
5dl t
6enu
7f nv

Al QY
BJRZ
CKS$
DLT.

y GOW

Rather than carrying out these steps on the eight individual bytesin eight registers, a net improvement results
from first packing the bytes four to aregister, performing the bit-swaps on the two registers, and then
unpacking. A complete procedure is shown in Figure 7-2. Parameter A is the address of the first byte of an 8x8

submatrix of the source matrix, which is of size 8mx8n bits. Similarly, parameter B is the address of the first
byte of an 8x8 submatrix in the target matrix, which is of size 8nx8m bits. That is, the full source matrix is

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02

8mxn bytes, and the full target matrix is 8nxm bytes.

Figure 7-2 Transposing an 8x8-bit matrix.

voi d transpose8(unsigned char A[8], int m int n,
unsi gned char B[8]) {

unsigned x, vy, t;

/1l Load the array and pack it into x and vy.

x = (A[0]<<24) | (Alm<<16) | (Al2*n<<8) | Al 3"n];
y = (Al4*n<<24) | (A[5*n]<<16) | (A 6*n]<<8) | A[7*n];
= (x M (x >> 7)) & OX00AAOOAA; x = x "t " (t << 7);
= (y ® (y > 7)) & Ox00AA00AA; y =y At A (t << T7);
= (x A (x >>14)) & 0x0000CCCC, x = x A (t <<14);
= (y ~ (y >>14)) & 0x0000CCCC;, y =y ~ (t <<14);

t = (x & OXFOFOFOFO) | ((y >> 4) & OxOFOFOFOF);
y = ((x << 4) & OxFOFOFOFO) | (y & OxOFOFOFOF);
X =t;

B[0] =x>>24; B[n] =x>>16; B[2* n] =x>>8; B[3* n] =x:
B[4*n] =y>>24; B[5*n]=y>>16; B[6*n]=y>>8; B[7*n]=y;
}
Theline

t = (x N (x > 7)) & OxO0AAOOAA;, x =x Mt N (t << 7);

isquite cryptic, for sure. It is swapping bits 1 and 8 (counting from the right), 3 and 10, 5 and 12, and so on, in
word X, while not moving bits 0, 2, 4, and so on. The swaps are done with the exclusive or method of bit

swapping, described on page 40. Word X, before and after the first round of swaps, is

0123 4567 89ab cdef ghij klmm opqgr stuv
082a 4c6e 193b 5d7f goig ksmu hpjr ltnv

To get arealistic comparison of these methods, the naive method described on page 109 wasfilled out into a
complete program similar to that of Figure 7-2. Both were compiled with the GNU C compiler to a target
machine that is very similar to the basic RISC. The resulting number of instructions, counting all load's,
store's, addressing code, prologs, and epilogs, is 219 for the naive code and 101 for Figure 7-2. (The prologs

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02

and epilogs were null, except for areturn branch instruction.) A version of the code of Figure 7-2 adapted to a
64-bit basic RISC (in which x and y would be held in the same register) would be about 85 instructions.

The algorithm of Figure 7-2 runs from fine to coarse granularity, based on the lengths of the groups of bits that

are swapped. The method can also be run from coarse to fine granularity. To do this, first treat the 8x8-bit
matrix as a 2x2 matrix whose elements are 4x4-bit matrices, and transpose the 2x2 matrix. Then treat each the
four 4x4 submatrices as a 2x2 matrix whose elements are 2x2-bit matrices, and transpose each of the four 2x2
submatrices, and so on. The code for thisis the same as that of Figure 7-2 except with the three groups of

statements that do the bit-rearranging run in reverse order.
Transposing a 32x32-Bit Matrix

The same recursive technique that was used for the 8x8-bit matrix can of course be used for larger matrices. For
a 32x32-bit matrix it takes five stages.

The details are quite different from Figure 7-2 because here we assume that the entire 32x32-bit matrix does not
fit in the general register space, and we seek a compact procedure that indexes the appropriate words of the bit
matrix to do the bit swaps. The algorithm to be described works best if run from coarse to fine granularity.

In the first stage, treat the matrix as four 16x16-bit matrices, and transform it as follows:

4B _14C|
C D B D

A denotes the left half of the first 16 words of the matrix, B denotes the right half of the first 16 words, and so
on. It should be clear that the above transformation may be accomplished by the following swaps:

Right half of word O with the left half of word 16,

Right half of word 1 with the left half of word 17,

Right half of word 15 with the left half of word 31.

To implement thisin code, we will have an index k that ranges from 0 to 15. In aloop controlled by k, the right
half of word k will be swapped with the left half of word k + 16.

In the second stage, treat the matrix as 16 8x8-bit matrices, and transform it as follows:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02

ABCDl |4ECG
EFGH _|BFDH
I JKL I MK O|
MNOP |JNLP

This transformation may be accomplished by the following swaps:
Bits OxOOFFOOFF of word 0 with bits OxFFOOFFOO of word 8,
Bits OXOOFFOOFF of word 1 with bits OxFFOOFFOO0 of word 9, and so on.

This means that bits 0-7 (the least significant eight bits) of word 0 are swapped with bits 8-15 of word 8, and so
on. The indexes of the first word in these swapsarek =0, 1, 2, 3,4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23. A
way to step k through these valuesis

k= (k+9)& 8.

In the loop controlled by k, bits of word k are swapped with bits of word k +8.
Similarly, the third stage does the following swaps:

Bits OxOFOFOFOF of word O with bits OxFOFOFOFO of word 4,

Bits OxOFOFOFOF of word 1 with bits OxFOFOFOFO of word 5, and so on.

The indexes of the first word in these swapsarek=0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27. A way
to step k through these valuesis

ko= (k+5)&—4.

In the loop controlled by k, bits of word k are swapped with bits of word k + 4.

These considerations are coded rather compactly in the C function shown in Figure 7-3 [GL S1]. The outer loop
controls the five stages, with] taking on the values 16, 8, 4, 2, and 1. It also steps the mask mthrough the
values 0xO000FFFF, OxOOFFOOFF, OxOFOFOFOF, 0x33333333, and 0x55555555. (The code for this, m= m*
(m<<j),isanicelittletrick. It does not have an inverse, which is the main reason this code works best for

coarse to fine transformations.) The inner loop steps k through the values described above. The inner loop body
swapsthebitsof a [k] identified by mask mwith thebitsof a [k+] | shifted right] and identified by m

which isequivalent to the bitsof a [k+] | identified with the complement of m The code for performing
these swaps is an adaptation of the "three exclusive or" technique shown on page 39 column (c).

Figure 7-3 Compact code for transposing a 32x32-bit matrix.

voi d transpose32(unsi gned Al 32]) {
int j, Kk;
unsigned m t;

m = OxXOO0O00FFFF;
for () =16; j !'=0; jJ =] > 1, m=m”? (m<<j)) {
for (k =0; k<32, k=(k+)] +1) &~) {
t = (ALk] » (ALk+] >>j)) &m
ALkl = Alk] " t;
ALk+] = ALk+] ™ (t <<]);

Based on compiling this function with the GNU C compiler to a machine very similar to the basic RISC, this
compilesinto 31 instructions, with 20 in the inner loop and 7 in the outer loop but not in the inner loop. Thus, it
executesin 4 + 5(7 + 16 - 20) = 1639 instructions. In contrast, if this function were performed using 16 calls on
the 8x8 transpose program of Figure 7-2, then it would take 16(101 + 5) = 1696 instructions, assuming the 16
callsare "strung out.” Thisincludes five instructions for each function call (observed in compiled code). Thus,
the two methods are, on the surface anyway, very nearly equal in execution time.

On the other hand, for a 64-bit machine the code of Figure 7-3 can easily be modified to transpose a 64x64-bit

matrix, and it would take about 4 + 6(7 + 32 - 20) = 3886 instructions. Doing the job with 64 executions of the
8x8 transpose method would take about 64(85 + 5) = 5760 instructions.

The algorithm works in place, and thusiif it is used to transpose a larger matrix, additional steps are required to
move 32x32-bit submatrices. It can be made to put the result matrix in an area distinct from the source matrix
by separating out either the first or last execution of the "for j-loop" and having it store the result in the other
area.

About half the instructions executed by the function of Figure 7-3 are for loop control, and the function loads

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list03#ch07list03
http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list02#ch07list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list03#ch07list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list03#ch07list03

and stores the entire matrix five times. Would it be reasonabl e to reduce this overhead by unrolling the loops? It
would, if you are looking for the ultimate in speed, if memory space is not a problem, if your machine's |-
fetching can keep up with alarge block of straight-line code, and, especially if the branches or loads are costly
in execution time. The bulk of the program will be the six instructions that do the bit swaps repeated 80 times
(5 - 16). In addition, the program will need 32 load instructions to load the source matrix and 32 store
instructions to store the result, for atotal of at least 544 instructions.

Our GNU C compiler will not unroll loops by such large factors (16 for the inner loop, five for the outer loop).
Figure 7-4 outlines a program in which the unrolling is done by hand. This program is shown as not working in
place, but it executes correctly in place, if that is desired, by invoking it with identical arguments. The number
of "swap" linesis 80. Our GNU C compiler for the basic RISC machine compiles thisinto 576 instructions
(branch-free, except for the function return), counting prologs and epilogs. This machine does not have the
store multiple and load multiple instructions, but it can save and restore registers two at a time with store
double and load double instructions.

Figure 7-4 Straight-line code for transposing a 32x32-bit matrix.

#define swap(al0, al, j, m t = (a0 ~ (al >>j)) & m \
a0 = a0 ™ t; \
al = al ™ (t << j);

voi d transpose32(unsi gned Al 32], unsigned B[32]) {
unsigned m t;
unsi gned a0, al, a2, a3, a4, a5, a6, a7,
a8, a9, allO, all, al2, al3, al4, als,
ale, al/, al8, al9, a20, a2l, a22, a23,
a24, a25, a26, a27, a28, a29, a30, a3l,

a0 = Al 0]; a1l = A 1]; a2 = A 2]; a3
a4 = A 4]; a5 = A 5]; a6 = A 6]; a7

Al 3];
Al 7];

a28 = A[28]; a29 = A[29]; a30 = A[30]: a3l = A[31];

m = Ox0000FFFF;
swap(a0, al6, 16,
swap(al, al7, 16,

swap(als, a3l, 16,
m = OxO0FFOOFF;

swap(a0, a8, 8,
swap(al, a9, 8,

33 3 33

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list04#ch07list04

swap(a28, a29, 1, m
swap(a30, a31, 1, m

B[0] = a0; B[1] = al; B[2] = az2; B[3] = a3;
B[4] = a4; B[5] = ab5; B[6] = a6; B[7] = a7;
B[28] = a28: B[29] = a29: B[30] = a30: B[31] = a31:

Thereis away to squeeze alittle more performance out of thisif your machine has arotate shift instruction
(either left or right). Theideaisto replace al the swap operations of Figure 7-4, which take six instructions

each, with ssmpler swaps that do not involve a shift, which take four instructions each (use the swap macro
given, with the shifts omitted).

First, rotate right words A [16..31] (that is, A [K] for 16 <k ':—:31) by 16 bit positions. Second, swap the right
halves of A[O] with A[16], A[1] with A[17], and so on, similarly to the code of Figure 7-4. Third, rotate right
words A[0..8] and A[24..31] by eight bit positions, and then swap the bits indicated by a mask of OxOOFFOOFF
in words A[0] and A[8], A[1] and A[9], and so on, asin the code of Figure 7-4. After five stages of this, you
don't quite have the transpose. Finally, you have to rotate left word A[1] by one bit position, A2] by two bit

positions, and so on (31 instructions). We do not show the code, but the steps are illustrated below for a 4x4-bit
matrix.

abecd abecd abij abij aeim aeim
efgh . efgh . e frmn . e fm . nbfq . BEfin
ijkl k1ij klcd kled koog cgko
MILCD I opgh hopg hlpd dhlp

The bit-rearranging part of the program of Figure 7-4 requires 480 instructions (80 swaps at six instructions
each). The revised program, using rotate instructions, requires 80 swaps at four instructions each, plus 80 rotate
instructions (16 - 5) for the first five stages, plusafinal 31 rotate instructions, for atotal of 431 instructions.
The prolog and epilog code would be unchanged, so using rotate instructionsin this way saves 49 instructions.

There is another quite different method of transposing a bit matrix: apply three shearing transformations
[GLS]]. If the matrix is nxn, the steps are (1) rotate row i to theright i bit positions, (2) rotate column |
upwards (j + 1) mod n bit positions, (3) rotate row i to theright (i + 1) mod n bit positions, and (4) reflect the
matrix about a horizontal axis through the midpoint. To illustrate, for a 4x4-bit matrix:

abecd abod hlpd dhlp aeim
efgh . hefg keoeg . cgke bfin
ikl ~ klij ~ mbfj bfin ~ cgko

MILCD nopm asim aesim dhlp

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list04#ch07list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list04#ch07list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list04#ch07list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list04#ch07list04
http:// /?xmlid=0-201-91465-4/biblio#bib19

This method is not quite competitive with the others because step (2) is costly. (To do it at reasonable cost,
rotate upwards all columns that rotate by n/2 or more bit positions by n/2 bit positions [these are columns n/2 -
1 through n - 2], then rotate certain columns upwards n/4 bit positions, and so on.) Steps 1 and 3 require only n
- 1instructions each, and step 4 requires no instructions at all if the results are ssmply stored to the appropriate
locations.

If an 8x8-bit matrix is stored in a 64-bit word in the obvious way (top row in the most significant eight bits, and
S0 on), then the matrix transpose operation is equivalent to three outer perfect shuffles or unshuffles [GL S1].
Thisisavery good way to do it if your machine has shuffle or unshuffle as asingle instruction, but it is not a
good method on a basic RISC machine.

http:// /?xmlid=0-201-91465-4/biblio#bib19

7- 4 Compress, or Generalized Extract

The APL language includes an operation called compress, written B/V, where B isaBoolean vector and V is
vector of the same length as B, with arbitrary elements. The result of the operation is a vector consisting of the
elements of V for which the corresponding bit in B is 1. The length of the result vector is equal to the number
of I'sin B.

Here we consider a similar operation on the bits of aword. Given amask m and aword X, the bits of x for
which the corresponding mask bit is 1 are selected and moved ("compressed") to the right. For example, if the
word to be compressed is (where each |etter denotes a single bit)

abcd efgh ijkl mop grst uvwx yzAB CDEF,

and the mask is

0000 1111 0011 0011 1010 1010 0101 0101,

then theresult is

0000 0000 0000 0000 efgh klop gsuw zBDF.

This operation might also be called generalized extract, by analogy with the extract instruction found on many
computers.

We are interested in code for this operation with minimum worst-case execution time, and offer the simple loop
of Figure 7-5 as a straw man to be improved upon. This code has no branches in the loop, and it executes in 260
instructions worst case, including the subroutine prolog and epilog.

Figure 7-5 A simple loop for the compress operation.

unsi gned conpress(unsigned x, unsigned m {

unsigned r, s, b; /'l Result, shift, mask bit.
r = 0;
s = 0;
do {
b =m&1;
r=r | ((x &b) <<s);
S =s + b;
X = x >> 1,
m=m>> 1;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list05#ch07list05

} while (m!= 0);
return r;

It is possible to improve on this by repeatedly using the parallel prefix method (see page 75) with the exclusive
or operation [GLS1]. We will denote the parallel prefix operation by PP-XOR. The basic ideaisto first identify
the bits of argument x that are to be moved right an odd number of bit positions, and move those. (This
operation issimplified if x isfirst anded with the mask, to clear out irrelevant bits.) Mask bits are moved in the
same way. Next, we identify the bits of x that are to be moved an odd multiple of 2 positions (2, 6, 10, and so
on), and we then move these bits of x and the mask. Next, we identify and move the bits that are to be moved
an odd multiple of 4 positions, then those that move an odd multiple of 8, and then those that move 16 bit
positions.

Because this algorithm, believed to be original with [GLS1], isabit difficult to understand, and becauseit is

perhaps surprising that something along these lines can be done at all, we will describe its operation in some
detail. Suppose the inputs are

x = abcd efgh ijkl mop qgrst uvwx yzAB CDEF,
m = 1000 1000 1110 0000 0000 1111 0101 oO101,
1 1 111
9 6 333 4444 3 2 10

where each letter in X represents asingle bit (with value O or 1). The numbers below each 1-bit in the mask m
denote how far the corresponding bit of X must move to the right. Thisis the number of 0'sin mto the right of
the bit. As mentioned above, it is convenient to first clear out the irrelevant bits of X, giving

X = a000 e000 ijkO 0000 0000 uvwx 0zOB ODOF.

The plan isto first determine which bits move an odd number of positions (to the right), and move those one bit
position. Recall that the PP-XOR operation results in a 1-bit at each position where the number of 1'sat and to
the right of that position is odd. We wish to identify those bits for which the number of O's strictly to theright is
odd. This can be done by computing mk = ~m<< 1 and performing PP-XOR on the result. This gives

nmk
nmp

1110 1110 0011 1111 1110 0001 0101 0100,
1010 0101 1110 1010 1010 0OOOO 1100 1100.

Observe that K identifies the bits of mthat have a 0 immediately to the right, and N sums these, modulo 2,
from the right. Thus, N identifies the bits of mthat have an odd number of O's to the right.

The bits that will be moved one position are those that are in positions that have an odd number of O's strictly to
theright (identified by n) and that have a 1-bit in the original mask. Thisissimply mv = np &m

http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /?xmlid=0-201-91465-4/biblio#bib19

m/ = 1000 0000 1110 0000 0000 0000 0100 0100.
These bits of mmay be moved with the assignment

m=(m”* m) | (m >> 1);

and the same bits of X may be moved with the two assignments

t = X & nv;
(x M t) | (t >>1);

x
I

(Moving the bits of mis simpler because all the selected bits are 1's.) Here the exclusive or isturning off bits
known to be 1 in mand X, and the or is turning on bits known to be 0 in mand X. The operations could also,

aternatively, both be exclusive or, or subtract and add, respectively. The results, after moving the bits selected
by mv right one position, are:

m
X

0100 1000 0111 O0OOO 0000 1111 0OO11 0011,
0a00 e000 0Oijk 0000 0000 uvwx 00zB OODF.

Now we must prepare a mask for the second iteration, in which we identify bits that are to move an odd
multiple of 2 positions to the right. Notice that the quantity mk & ~np identifies those bits that have a0

immediately to the right in the original mask m and those bits that have an even number of O'sto theright in the
original mask. These properties apply jointly, although not individually, to the revised mask m (That isto say,
nmk identifies all the positions in the revised mask mthat have a 0 to the immediate right and an even number of

O'sto theright.) Thisisthe quantity that, if summed from the right with PP-XOR, identifies those bits that
move to the right an odd multiple of 2 positions (2, 6, 10, and so on). Therefore, the procedure isto assign this
quantity to mk and perform a second iteration of the above steps. The revised value of Nk is

mk = 0100 1010 0001 0101 0100 0001 0001 0000.

A complete C function for this operation is shown in Figure 7-6. It does the job in 127 basic RISC instructions
(constant), including the subroutine prolog and epilog. Figure 7-7 shows the sequence of values taken on by

certain variables at key points in the computation, with the same inputs that were used in the discussion above.
Observe that a by-product of the algorithm, in the last value assigned to m is the original mwith all its 1-bits

compressed to theright.

Figure 7.6 Parallel prefix method for the compress operation.

unsi gned conpress(unsigned x, unsigned m {
unsi gned nk, np, nmv, t;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list06#ch07list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list07#ch07list07

X =X &m [/l Clear irrelevant bits.
nk = ~m<< 1; /1 W will count 0's to right.
for (i =0; i <5; i1++) {
nmp = nk * (nk << 1); [l Parallel prefix.
m = nm ~ (mp << 2);
mp = nmp ~ (nmp << 4);
m = nm ~ (nmp << 8);
m = nmp * (np << 16);
m =np &m // Bits to nove.
m=m?*n | (mv > (1 << 1)); /1 Conpress m
t = x & nv,;
X =x Mt | (t > (1 <<1)); /'l Conpress X.
nk = nk & ~np;
}
return Xx;

}

Figure 7.7 Operation of the parallel prefix method for the compress operation.

abcd efgh ijkl mop grst uvwx yzAB CDEF
1000 1000 1110 0000 0000 1111 0101 0101
a000 e000 ij kO 0000 0000 uvwx 0zOB ODOF

X 3 X
I

I = 0,
After PP,

1110 1110 0011 1111 1110 0001 0101 0100
1010 0101 1110 1010 1010 OOOO 1100 1100
1000 0000 1110 0000 0OOOO 0000 0100 0100
0100 1000 0111 O0OOO O0OOO 1111 0011 0OO11
0a00 e000 Oi j k 0000 0000 uvwx 00zB OODF

«533%

i =1,
After PP,

0100 1010 0001 0101 0100 0001 0001 0000
1100 0110 0000 1100 1100 0000 1111 0000
0100 0000 0000 0000 0000 0000 0011 0000
0001 1000 0111 O0OOO 0000 1111 0000 1111
000a e000 0Oij k 0000 0000 uvwx 0000 zBDF

«533%

i = 2,
After PP,

0000 1000 0001 0001 OOOO 0001 0000 0000
0000 0111 1111 0000 1111 1111 OOOO 0000
0000 0000 0111 O0OOO 0000 1111 0OOOO 0000
0001 1000 0000 0111 OOOO 0000 1111 1111

,33%2

x
I

000a e000 0000 Oijk 0000 0000 uvwx zBDF

I = 3,
After PP,

0000 1000 0000 0001 OOOO 0000 0000 0000
0000 0111 1111 1111 OOOO OOOO 0OOOO 0000
0000 0000 0000 0111 OOOO 0OO0OO 0000 0000
0001 1000 O0OOO 0000 0000 0111 1111 1111
000a e000 0000 0000 0000 Oijk uvwx zBDF

53332

i = 4,
After PP,

0000 1000 0000 0000 OOOO O0OOO 0000 0000
1111 1000 0000 OOOO O0OOO 0000 0000 0000
0001 1000 0000 0000 OOOO 0000 0000 0000
0000 0000 0000 0000 0001 1111 1111 1111
0000 0000 0000 0000 000a eijk uvwx zBDF

«533%

We calculate that the algorithm of Figure 7-6 would execute in 169 instructions on a 64-bit basic RISC, as
compared to 516 (worst case) for the algorithm of Figure 7-5.

The number of instructions required by the algorithm of Figure 7-6 can be reduced substantialy if the mask m
is a constant. This can occur in two situations: (1) acall to"conpr ess(x, m " occursin aloop, in which
the value of mis not known but it is aloop constant, and (2) the value of mis known and the code for

conpr ess isgenerated in advance, perhaps by a compiler.

Notice that the value assigned to X in theloop in Figure 7-6 is not used in the loop for anything other than the
assignment to X. And, X is dependent only on itself and variable mv. Therefore, the subroutine can be coded
with all referencesto X deleted, and the five values computed for mv can be saved in variablesnmvO, nv1, ...,
mv4. Then, in situation (1) the function without referencesto X can be placed outside the loop in which
"conpr ess(x, m " occurs, and the following statements can be placed in the loop:

X =X &m

t =x &mv0; x =x "t | (t > 1);
t =x &mvl;, x =x "t | (t > 2);
t =x &m2;, x =x"t | (t > 4);
t =x &m3;, x =x"t | (t >> 8);
t =x &mv4;, x =x "t | (t >> 16),;

Thisisonly 21 instructions in the loop (the loading of the constants can be placed outside the loop), a
considerable improvement over the 127 required by the full subroutine of Figure 7-7.

In situation (2), in which the value of mis known, the same sort of thing can be done, and further optimization

may be possible. It might happen that one of the five masksis 0, in which case one of the five lines shown
above can be omitted. For example, mask Il is O if it happens that no bit moves an odd number of positions,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list06#ch07list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list05#ch07list05
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list06#ch07list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list06#ch07list06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list07#ch07list07

and n¥ is0if no bit moves more than 15 positions, and so on.

As an example, for

m = 0101 0101 0101 0101 0101 0101 0101 0101,

the calculated masks are

mvO = 0100 0100 0100 0100 0100 0100 0100 0100
nmnvl = 0011 0000 0011 0000 0011 O0O0OO 0011 0000
nv2 = 0000 1111 0000 O0O0OO OOOO 1111 OOOO 0000
nv3 = 0000 0000 1111 1111 OOOO OOOO OOOO 0000
nmv4 = 0000 0000 OO0OO0 O0O0OO 0OOOO O0OOO 0000 0000

Because the last mask is 0, in the compiled code situation this compression operation is donein 17 instructions
(not counting the loading of the masks). Thisis not quite as good as the code shown for this operation on page
108 (13 instructions, not counting the loading of masks), which takes advantage of the fact that alternate bits
are being selected.

Using Insert and Extract

If your computer has the insert instruction, preferably with immediate values for the operands that identify the
bit field in the target register, then in the compiled situation insert can often be used to do the compress
operation with fewer instructions than the methods discussed above. Furthermore, it doesn't tie up registers
holding the masks.

The target register isinitialized to 0, and then, for each contiguous group of 1'sin the mask m variable X is
shifted right to right-justify the next field, and the insert instruction is used to insert the bits of X in the

appropriate place in the target register. This does the operation in 2n + 1 instructions, where n is the number of
fields (groups of consecutive 1's) in the mask. The worst case is 33 instructions, because the maximum number
of fieldsis 16 (which occursfor aternating 1'sand 0's).

An example in which the insert method uses substantially fewer instructions is m= 0x0010084A. Compressing
with this mask requires moving bits 1, 2, 4, 8, and 16 positions. Thus, it takes the full 21 instructions for the
parallel prefix method, but only 11 instructions for the insert method (there are five fields). A more extreme
case is M= 0x80000000. Here a single bit moves 31 positions, requiring 21 instructions for the parallel prefix

method, but only three instructions for the insert method and only one instruction (shift right 31) if you are not
constrained to any particular scheme.

Y ou can aso use the extract instruction in various simple ways to do the compress operation with a known
mask in 3n - 2 instructions, where n is the number of fields in the mask.

Clearly, the problem of compiling optimal code for the compress operation with a known mask is adifficult
one.

Compress Left

To compress hits to the | eft, obviously you can reverse the argument X and the mask, compress right, and

reverse the result. Another way isto compress right and then shift left by pop(m). These might be satisfactory
if your computer has an instruction for bit reversal or population count, but if not, the algorithm of Figure 7-6is

easily adapted: Just reverse the direction of all the shifts except the two in the expressions 1 <<| (eight to
change).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07list06#ch07list06

7-5 General Permutations, Sheep and Goats Operation

To do general permutations of the bitsin aword, or of anything else, a central problem is how to represent the
permutation. It cannot be represented very compactly. Because there are 32! permutations of the bitsin a 32-bit

M7 = "
word, at least r]”E-:H—-]'-I 118 bits,
permutation out of the 32!.

or three words plus 22 bits, are required to designate one

One interesting way to represent permutations is closely related to the compression operations discussed in
Section 7-4 [GLS1]. Start with the direct method of simply listing the bit position to which each bit moves. For
example, for the permutation done by arotate |left of four bit positions, the bit at position O (the least significant
bit) movesto position 4, 1 movesto 5, ..., 31 movesto 3. This permutation can be represented by the vector of
32 5-bit indexes:

00100
00101
11111
00000
00001

00010
00011

Treating that as a bit matrix, the representation we have in mind isits transpose, except reflected about the of f
diagonal so the top row contains the least significant bits and the result uses little-endian bit numbering. This
we store as five 32-bit wordsin array p:

p[O0] = 1010 1010 1010 1010 1010 1010 1010 1010

p[1] = 1100 1100 1100 1100 1100 1100 1100 1100
p[2] = 0000 1111 0000 1111 0000 1111 0000 1111
p[3] = 0000 1111 1111 0000 0000 1111 1111 0000
p[4] = 0000 1111 1111 1111 1111 0000 0000 0000

Each bit of p[O] istheleast significant bit of the position to which the corresponding bit of X moves, each bit
of p[1] isthe next more significant bit, and so on. Thisis similar to the encoding of the masks denoted by nv
in the previous section, except that Mv applies to revised masks in the compress algorithm, not to the original
mask.

The compression operation we need compresses to the left all bits marked with 1'sin the mask, and compresses

[1]
to theright all bits marked with 0's. Thisis sometimes called the "sheep and goats" operation (SAG), or

http:// /?xmlid=0-201-91465-4/ch07lev1sec4#ch07lev1sec4
http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec5&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07footnote01#ch07footnote01

"generalized unshuffle." It can be calculated with

[1] If big-endian bit numbering is used, compress to the left all bits marked with 0's, and to the right all bits marked with

1's.

SAQ X,

m = conpress left(x, m | conpress(x, ~m.

With SAG as afundamental operation, and a permutation p described as above, the bits of aword X can be
permuted by p in the following 15 steps:

X

p[1]
Pl 2]
Pl 3]
Pl 4]

X

p[2]
p[3]
p[4]

X
p[3]
p[4]

X
p[4]

X

SAG(X, p[O]);
SAG(p[1], p[0]);
SAG(p[2], p[0]);
SAG(p[3], p[0]);
SAG(p[4], p[0]);

SAG(X, p[1]);
SAG(p[2], p[1]);
SAG(p[3], p[1]);
SAG(p[4], p[1]);

SAQ(X, p[2]);
SAG(p[3], p[2]);
SAG(p[4], p[2]);

SAG(X, p[3]);
SAG p[4], p[3]);
SAGQ(X, p[4]);

In these steps, SAG is used to perform a stable binary radix sort. Array p isused as 32 5-bit keys to sort the bits
of X. Inthe first step, all bitsof x for which p[0] =1 are moved to the left half of the resulting word, and all
those for which p[0] =0 are moved to the right half. Other than this, the order of the bitsis not changed (that

is, the sort is"stable"). Then all the keys that will be used for the next round of sorting are similarly sorted. The
sixth lineis sorting X based on the second least significant bit of the key, and so on.

Similarly to the situation of compressing, if a certain permutation p isto be used on a number of words X, then
a considerable savings results by precomputing most of the steps above. The permutation array is revised to

p[1]
Pl 2]

SAG(p[1], p[0]);
SAG(SAG(p[2], p[0O]), p[1]);

SAG(SAGQ SAX(p[3], p[O]), p[1]), p[2]);
SAG(SAG(SAG(SAG(p[4], p[0])., p[1])., p[2]), p[3]);

p[3]
p[4]

and then each permutation is done with

X = SAQ(x, p[0O]);
X = SAQ x, p[1l]);
X = SAQ x, p[2]);
X = SAQ x, p[3]);
X = SAQ x, p[4]);

A more direct (but perhaps less interesting) way to do general permutations of the bitsin aword isto represent
a permutation as a sequence of 32 5-bit indexes.

The kth index is the bit number in the source from which the kth bit of the result comes. (Thisisa"comes
from" list, whereas the SAG method uses a"goesto” list.) These could be packed six to a 32-bit word, thus
requiring six wordsto hold all 32 bit indexes. An instruction can be implemented in hardware such as

bitgather Rt,Rx, R,

whereregister Rt isatarget register (and also a source), register Rx contains the bits to be permuted, and
register Rl contains six 5-bit indexes (and two unused bits). The operation of the instruction is

e (1<6) | x; x; x X, X; X; .

In words, the contents of the target register are shifted left six bit positions, and six bits are selected from word
x and placed in the vacated six positions of t. The bits selected are given by the six 5-bit indexesin word i,
taken in left-to-right order. The bit numbering in the indexes could be either little- or big-endian, and the
operation would probably be as described for either type of machine.

To permute aword, use a sequence of six such instructions, all with the same Rt and Rx, but different index
registers. In the first index register of the sequence, only indexesi, and i are significant, as the bits selected by

the other four indexes are shifted out of the left end of Rt .

An implementation of this instruction would most likely allow index values to be repeated, so the instruction
can be used to do more than permute bits. It can be used to repeat any selected bit any number of timesin the
target register. The SAG operation lacks this generality.

It is not unduly difficult to implement this as afast (e.g., one cycle) instruction. The bit selection circuit

consists of six 32:1 MUX's. If these are built from five stages of 2:1 MUX'sin today's technology (6 - 31 = 186
MUX'sin al), the instruction would be faster than a 32-bit add instruction [MD].

Permuting bits has applications in cryptography, and the closely related operation of permuting subwords (e.g.,
permuting the bytesin aword) has applicationsin computer graphics. Both of these applications are more
likely to deal with 64-bit words, or possibly with 128, than with 32. The SAG and bitgather methods apply with
obvious changes to these larger word sizes.

To encrypt or decrypt a message with the Data Encryption Standard (DES) algorithm requires a large number
of permutation-like mappings. First, key generation is done, once per session. Thisinvolves 17 permutation-
like mappings. Thefirst, caled "permuted choice 1," maps from a 64-bit quantity to a 56-bit quantity (it selects
the 56 non-parity bits from the key and permutes them). Thisis followed by 16 permutation-like mappings
from 56 bits to 48 hits, al using the same mapping, called "permuted choice 2."

Following key generation, each block of 64 bits in the message is subjected to 34 permutation-like operations.
Thefirst and last operations are 64-bit permutations, one being the inverse of the other. There are 16
permutations with repetitions that map 32-bit quantities to 48 bits, all using the same mapping. Finaly, there
are 16 32-hit permutations, all using the same permutation. The total number of distinct mappingsissix. They
aredl constants and are given in [DES)].

DES s obsolete, asit was proved to be insecure in 1998 by the Electronic Frontier Foundation, using special
hardware. The National Institute of Standards and Technology (NIST) has endorsed a temporary replacement
called Triple DES, which consists of DES run serially three times on each 64-bit block, each time with a
different key (that is, the key length is 192 bits, including 24 parity bits). Hence it takes three times as many
permutation operations as does DES to encrypt or decrypt.

However, the "permanent” replacement for DES and Triple DES, the Advanced Encryption Standard
(previously known as the Rijndael algorithm [AES]), involves no bit-level permutations. The closest it comes
to apermutation is a simple rotation of 32-bit words by a multiple of 8-bit positions. Other encryption methods
proposed or in use generally involve far fewer bit-level permutations than DES.

To compare the two permutation methods discussed here, the bitgather method has the advantages of (1)
simpler preparation of the index words from the raw data describing the permutation, (2) simpler hardware, and
(3) more general mappings. The SAG method has the advantages of (1) doing the permutation in five rather
than six instructions, (2) having only two source registersin itsinstruction format (which might fit better in
some RISC architectures), (3) scaling better to permute a doubleword quantity, and (4) permuting subwords
more efficiently.

Item (3) isdiscussed in [LSY]. The SAG instruction allows for doing a general permutation of atwo-word

guantity with two executions of the SAG instruction, afew basic RISC instructions, and two full permutations
of single words. The bitgather instruction allows for doing it by executing three full permutations of single
words plus afew basic RISC instructions. This does not count preprocessing of the permutation to produce new
guantities that depend only on the permutation. We leave it to the reader to discover these methods.

http:// /?xmlid=0-201-91465-4/biblio#bib45
http:// /?xmlid=0-201-91465-4/biblio#bib11
http:// /?xmlid=0-201-91465-4/biblio#bib1
http:// /?xmlid=0-201-91465-4/biblio#bib43

Regarding item (4), to permute, for example, the four bytes of a word with bitgather requires executing six
instructions, the same as for ageneral bit permutation by bitgather. But with SAG it can be done in only two
instructions, rather than the five required for a general bit permutation by SAG. The gain in efficiency applies

even when the subwords are not a power of 2 in size; the number of steps required is r log,# -I‘Where nisthe
number of subwords, not counting a possible non-participating group of bits that stays at one end or the other.

[LSY] discusses the SAG and bitgather instructions (called "GRP" and "PPERM," respectively), other possible
permutation instructions based on networks, and permuting by table lookup.

http:// /?xmlid=0-201-91465-4/biblio#bib43

7-6 Rearrangements and Index Transformations

Many simple rearrangements of the bits in a computer word correspond to even simpler transformations of the
coordinates, or indexes, of the bits [GL S1]. These correspondences apply to rearrangements of the elements of

any one-dimensional array, provided the number of array elementsis an integral power of 2. For programming
purposes, they are useful primarily when the array elements are a computer word or larger in size.

As an example, the outer perfect shuffle of the elements of an array A of size eight, with the result in array B,
consists of the following moves:

Ay — By, Ay = B, Ay — By, Ay —> By,

Ay — B; As— Bj; Ay — Bg; Aq = B4,

Each B-index is the corresponding A-index rotated left one position, using a 3-bit rotator. The outer perfect
unshuffle is of course accomplished by rotating right each index. Some similar correspondences are shown in
Table 7-1. Here n isthe number of array elements, "Isb" means least significant bit, and the rotations of indexes

are done with alog,n-bit rotator.

Table 7-1. Rearrangements and Index Transformations

Index Transformation
Rear rangement Array Index, or Big-endian Bit | Little-endian Bit Numbering
Numbering
Reversal Complement Complement
Bit flip, or generalized reversal (page 102) [Exclusive or with a constant Exclusive or with a constant
Rotate left k positions Subtract k (mod n) Add k (mod n)
Rotate right k positions Add k (mod n) Subtract k (mod n)
Outer perfect shuffle Rotate |eft one position Rotate right one position

http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch07lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch07table01#ch07table01

Outer perfect unshuffle

Rotate right one position

Rotate |eft one position

Inner perfect shuffle

Rotate |eft one, then complement
Isb

Complement Isb, then rotate
right one

Inner perfect unshuffle

Complement Isb, then rotate right

Rotate |eft one, then complement
Isb

Transpose of an 8x8-bit matrix heldina |Rotate (left or right) three Rotate (left or right) three
64-bit word positions positions
FFT unscramble Reverse bits Reverse bits

Chapter 8. Multiplication

Multiword Multiplication

High-Order Half of 64-Bit Product

High-Order Product Signed from/to Unsigned

Multiplication by Constants

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

8-1 Multiword Multiplication

This may be done with, basically, the traditional grade-school method. Rather than develop an array of partia
products, however, it is more efficient to add each new row, asit is being computed, into arow that will
become the product.

If the multiplicand is mwords, and the multiplier is n words, then the product occupies m + n words (or fewer),
whether signed or unsigned.

In applying the grade-school scheme, we would like to treat each 32-bit word as asingle digit. Thisworks out
well if an instruction that gives the 64-bit product of two 32-bit integers is available. Unfortunately, even if the
machine has such an instruction, it is not readily accessible from most high-level languages. In fact, many
modern RISC machines do not have this instruction in part because it isn't accessible from high-level languages
and thus would not often be used. (Another reason is that the instruction would be one of avery few that give a
two-register result.)

Our procedure is shown in Figure 8-1. It uses halfwords as the "digits." Parameter W gets the result, and u and
v are the multiplier and multiplicand, respectively. Each is an array of halfwords, with the first halfword (w

[O] ,u[0], and v[O]) being the least significant digit. Thisis"little-endian” order. Parameters mand n are
the number of halfwordsin u and v, respectively.

The picture below may help in understanding. There is no relation between mand n; either may be the larger.

."JI': j,u'|:| 2 Fas - LI']. l'l“l-'
WO 1 B orow 1_.r,| W
. '.l.'-l We

- .
*min-1 “m+n-2 - - -

The procedure follows Algorithm M of [Knu2, sec. 4.3.1], but is coded in C and modified to perform signed
multiplication. Observe that the assignment to t in the upper half of Figure 8-1 cannot overflow, because the

maximum value that could be assigned to t is(216-1)2+2(216-1)=232-1,

Multiword multiplication is simplest for unsigned operands. In fact, the code of Figure 8-1 performs unsigned

multiplication if the "correction” steps (the lines between the three-line comment and the "return" statement)
are omitted. An unsigned version can be extended to signed in three ways:

Figure 8-1 Multiword integer multiplication, signed.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01
http:// /?xmlid=0-201-91465-4/biblio#bib39
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01

voi d nmul ms(unsi gned short wW], unsigned short u[],
unsi gned short v[], int m int n) {
unsigned int k, t, b;

int i, j;
for (i =0; i <m 1++)
wi] =0;
for (j =0; j <n; j++) {
k = 0;
for (i =0; i <m i++) {
t =uli]*v[j] +wi +]j] +k;
Wi +j] =t; Il (l.e., t & OXFFFF).
k =t >> 16;
}
wj +n =Kk

/1l Now w] has the unsigned product. Correct by
/'l subtracting v*2**16mif u < 0, and
/]l subtracting u*2**16n if v < O.

if ((short)ufm- 1] < 0) {
b = 0; [/ Initialize borrow.

for (J =0; j <n; j++) {
t =wj +nm - v[j] - b;
wij o+ =t;
b =t >> 31;
}
}
i f ((short)vin - 1] < 0) {
b = 0;
for (i =0; I <m i++) {
t =wi +n] - ufi] - b;
Wi +n] =t;
b =t > 31;
}
}
return;

1. Takethe absolute value of each input operand, perform unsigned multiplication, and then negate

the result if the input operands had different signs.

2. Perform the multiplication using unsigned elementary multiplication except when multiplying one
of the high-order halfwords, in which case use signed x unsigned or signed x signed multiplication.

3. Perform unsigned multiplication and then correct the result somehow.

The first method requires passing over as many as m+ n input halfwords, to compute their absolute value. Or,
if one operand is positive and one is negative, the method requires passing over as many as max(m, n) + m+n
halfwords, to complement the negative input operand and the result. Perhaps more serious, the algorithm would
alter itsinputs (which we assume are passed by address), which may be unacceptable in some applications.
Alternatively, it could allocate temporary space for them, or it could alter them and later change them back. All
these alternatives are unappealing.

The second method requires three kinds of elementary multiplication (unsigned x unsigned, unsigned x signed,
and signed x signed) and requires sign extension of partial products on the left, with O'sor 1's, making each
partial product take longer to compute and add to the running total.

We choose the third method. To see how it works, let u and v denote the values of the two signed integers being
multiplied, and let them be of lengths M and N bits, respectively. Then the stepsin the upper half of Figure 8-1

erroneously interpret u as an unsigned quantity, having value u + 2Mu,, _ 1, where uy, . 1 isthe sign bit of u.
That is, uy, .1 = 1if uisnegative, and uy, . 1 = 0 otherwise. Similarly, the program interprets v as having value

VvV + 2NUN -1
The program computes the product of these unsigned numbers—that is, it computes

(+ 2%y v+ 2%y) = v+ 2Muy v+ 2% e+ 2 Ny vy

To get the desired result (uv), we must subtract from the unsigned product the value 2Muy; - 1 v + 2Nvy -4 UL
There is no need to subtract the term 2M + Nu,, _; vy, . 1, because we know that the result can be expressed in M
+ N bits, so there is no need to compute any product bits more significant than bit position M + N - 1. These two

subtractions are performed by the steps below the three-line comment in Figure 8-1. They require passing over
amaximum of m+ n halfwords.

It might be tempting to use the program of Figure 8-1 by passing it an array of fullword integers—that is, by
"lying across the interface." Such a program will work on a little-endian machine, but not on a big-endian one.
If we had stored the arraysin the reverse order, with u[O] being the most significant halfword (and the

program altered accordingly), the "lying" program would work on a big-endian machine, but not on alittle-
endian one.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list01#ch08list01

8-2 High-Order Half of 64-Bit Product

Here we consider the problem of computing the high-order 32 bits of the product of two 32-bit integers. Thisis
the function of our basic RISC instructions multiply high signed (mul hs) and multiply high unsigned

(mul hu).

For unsigned multiplication, the algorithm in the upper half of Figure 8-1 works well. Rewrite it for the special
case m=n = 2, with loops unrolled, obvious ssmplifications made, and the parameters changed to 32-bit
unsigned integers.

For signed multiplication, it is not necessary to code the "correction steps’ in the lower half of Figure 8-1.

These can be omitted if proper attention is paid to whether the intermediate results are signed or unsigned
(declaring them to be signed causes the right shifts to be sign-propagating shifts). The resulting algorithm is
shown in Figure 8-2. For an unsigned version, ssimply change all thei nt declarationsto unsi gned.

Figure 8-2 Multiply high signed.

int mulhs(int u, int v) {
unsi gned u0, vO0, wO;
int ul, vi, wi, w2, t;

uO = u & OxFFFF; ul u >> 16;
vO = v & OXFFFF;, v1 = v >> 16;
wOo = uO0*vO;

t = ul*vO0 + (WO >> 16);

wl =t & OxFFFF;

W2 =t >> 16;

wl = uO*vl + wi;

return ul*vl + w2 + (wl >> 16);

The algorithm requires 16 basic RISC instructions in either the signed or unsigned version, four of which are
multiplications.

http:// /?xmlid=0-201-91465-4/ch08lev1sec1#ch08list01
http:// /?xmlid=0-201-91465-4/ch08lev1sec1#ch08list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch08lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch08list02#ch08list02

8-3 High-Order Product Signed from/to Unsigned

Assume that the machine can readily compute the high-order half of the 64-bit product of two unsigned 32-bit
integers, but we wish to perform the corresponding operation on signed integers. We could use the procedure of
Figure 8-2, but that requires four multiplications; the procedure to be given [BGN] is much more efficient than
that.

The analysisis a special case of that done to convert Knuth's Algorithm M from an unsigned to a signed
multiplication routine (Figure 8-1). Let x and y denote the two 32-bit signed integers that we wish to multiply

together. The machine will interpret x as an unsigned integer, having the value x + 232x3;, where X3, is the most
significant bit of x (that is, x3; isthe integer 1 if X is negative, and 0 otherwise). Similarly, y under unsigned

interpretation has the value y + 232y,

Although the result we want is the high-order 32 bits of xy, the machine computes

E.T -+ 232_1-3]][}J -+ 232}13]] = _1'1.]..' 1= 232[_‘[31}' +:|.'3|_T) T EM.TELJ-'E;I .

To get the desired result, we must subtract from this the quantity 232(x31y + y31X) + 264x31y3,. Because we

know that the result can be expressed in 64 bits, we can perform the arithmetic modulo 264. This means that we

can safely ignore the last term, and compute the signed high-order product as shown below (seven basic RISC
instructions).

Equation 1

p « mulhu(x, ») W multiply high unsigned instruction.
fe—(x=3D&y i = xq0.

e (y=3)&x Ity = yyx.

pep—t,—it i p = desired result.

Unsigned from Signed

The reverse transformation follows easily. The resulting program is the same as (1) except with the first

http:// /?xmlid=0-201-91465-4/ch08lev1sec2#ch08list02
http:// /?xmlid=0-201-91465-4/biblio#bib6
http:// /?xmlid=0-201-91465-4/ch08lev1sec1#ch08list01

instruction changed to multiply high signed and the last operation changed to p #=p + t; + t,.

8-4 Multiplication by Constants

It is nearly atriviality that one can multiply by a constant with a sequence of shift left and add instructions. For
example, to multiply x by 13 (binary 1101), one can code

f—x=2
[, é—x <=3

reftietx

s

where r gets the result.

In this section, left shifts are denoted by multiplication by a power of 2, so the above plan iswritten r #=8x +
4x + x, which isintended to show four instructions on the basic RISC and most machines.

What we want to convey hereisthat there is more to this subject than meets the eye. First of all, there are other
considerations besides simply the number of shift's and add's required to do a multiplication by agiven
constant. To illustrate, below are two plans for multiplying by 45 (binary 101101).

tedx t «— 4x
re—x+t f, — Bx
te 2t t, — 32x
ré—r+i reif +x
141 1,71,
re—rti{ FéerTiy

The plan on the left uses avariable t that holds x shifted left by a number of positions that correspondsto a 1-
bit in the multiplier. Each shifted value is obtained from the one before it. This plan has these advantages:

» Itrequires only oneworking register other than the input x and the output r.

» Except for the first two, it uses only 2-address instructions.

e Theshift amounts are relatively small.
The same properties are retained when the plan is applied to any multiplier.

The scheme on the right does all the shift'sfirst, with x as the operand. It has the advantage of increased
parallelism. On a machine with sufficient instruction-level parallelism, the scheme on the right executesin three
cycles, whereas the scheme on the left, running on a machine with unlimited parallelism, requires four.

In addition to these details, it is nontrivial to find the minimum number of operations to accomplish
multiplication by a constant, where by an "operation" we mean an instruction from atypical computer's set of
add and shift instructions. In what follows, we assume this set consists of add, subtract, shift left by any
constant amount, and negate. We assume the instruction format is three-address. However, the problem is no
easier if oneisrestricted to only add (adding a number to itself, and then adding the sum to itself, and so on,
accomplishes a shift left of any amount), or if one augments the set by instructions such as the HP PA-RISC's
shift and add instructions. (These shift the contents of aregister left by one, two, or three positions, add it to a
second register, and put the result in athird register. Thus, it can multiply by 3, 5, or 9 in asingle, presumably
fast, instruction.) We also assume that only the least significant 32 bits of the product are wanted.

The first improvement to the basic binary decomposition scheme suggested above is to use subtract to shorten
the sequence when the multiplier contains a group of three or more consecutive 1-bits. For example, to multiply
by 28 (binary 11100), we can compute 32X - 4x (three instructions) rather than 16x + 8x + 4x (five
instructions). On two's-complement machines, the result is correct even if the intermediate result of 32x
overflows and the final result does not.

To multiply by a constant m with the basic binary decomposition scheme (using only shift's and add's) requires

2pop(m)—1-5

instructions, where d = 1 if mendsin a 1-bit (is odd), and d = O otherwise. If subtract is also used, it requires

dp(m)+2s(m)—1-5

instructions, where g(m) is the number of groups of two or more consecutive 1-bitsin m, s(m) is the number of
"singleton" 1-bitsin m, and & has the same meaning as before.

For agroup of size 2, it makes no difference which method is used.

The next improvement isto treat specially groups that are separated by a single O-bit. For example, consider m

=55 (binary 110111). The group method calculates this as (64x - 16x) + (8x - x), which requires six
instructions. Calculating it as 64x - 8x - X, however, requires only four. Similarly, we can multiply by binary
110111011 asillustrated by the formula 512x - 64x - 4x - X (Six instructions).

The formulas above give an upper bound on the number of operations required to multiply avariable x by any
given number m. Another bound can be obtained based on the size of min bits—that is, on

n o= |_l“‘=’~: mJ + 1.

Theorem. Multiplication of a variable x by an n-bit constant m, m :_:'"1, can be accomplished with at most n
instructions of the type add, subtract, and shift left by any given amount.

Proof. (Induction on n.) Multiplication by 1 can be done in O instructions, so the theorem holdsfor n = 1. For n
> 1, if mendsin a0-hbit, then multiplication by m can be accomplished by multiplying by the number consisting
of theleft n- 1 bitsof m (that is, by m/2), in n - 1 instructions, followed by a shift left of the result by one
position. This uses n instructions altogether.

If mendsin binary 01, then mx can be calculated by multiplying x by the number consisting of the left n - 2 bits
of m, in n - 2 instructions, followed by aleft shift of the result by 2, and an add of x. This requires n instructions
altogether.

If mendsin binary 11, then consider the casesin which it endsin 0011, 0111, 1011, and 1111. Let t bethe
result of multiplying x by theleft n - 4 bits of m. If mendsin 0011, then mx = 16t + 2x + x, which requires (n -
4) + 4 = ninstructions. If mendsin 0111, then mx = 16t + 8x - X, which requires n instructions. If mendsin
1111, then mx = 16t + 16x - X, which requires n instructions. The remaining caseisthat mendsin 1011.

It is easy to show that mx can be calculated in n instructionsif mendsin 001011, 011011, or 111011. The
remaining caseis 101011.

This reasoning can be continued, with the "remaining case" always being of the form 101010...10101011.
Eventually, the size of mwill be reached, and the only remaining case is the number 101010...10101011. This
n-bit number contains n/2 + 1 1-bits. By a previous observation, it can multiply x with2(n/2+ 1) - 2=n
instructions.

Thus, in particular, on a 32-bit machine multiplication by any constant can be done in at most 32 instructions,
by the method described above. By inspection, it is easily seen that for n even, the n-bit number 101010...
101011 requires ninstructions, and for n odd, the n-bit number 1010101...010110 requires n instructions, so
the bound is tight.

The methodology described so far is not too hard to work out by hand, or to incorporate into an algorithm such
as might be used in acompiler. But such an algorithm would not always produce the best code, because further
improvement is sometimes possible. This can result from factoring the multiplier m or some intermediate
quantity along the way of computing mx. For example, consider again m = 45 (binary 101101). The methods
described above require six instructions. Factoring 45 as 5 - 9, however, gives a four-instruction solution:

fe—4dx+x

re— Sttt

Factoring may be combined with additive methods. For example, multiplication by 106 (binary 1101010)
requires seven instructions by the additive methods, but writing it as 7 - 15 + 1 leads to afive-instruction

solution.

With factoring, the maximum number of instructions needed to multiply by an n-bit constant is, to the writer's
knowledge, an open problem. For large n it may be less than the bound of n proved above. For example, m=
OXAAAAAAAB requires 32 instructions without factoring, but writing thisvalueas2 -5 - 17 - 257 - 65537 + 1
gives aten-instruction solution. (Ten instructions, however, is probably not typical of large numbers. The
factorization reflects the simple bit pattern of alternate 1'sand 0's.)

This should give an idea of the combinatorics involved in this seemingly simple problem. Knuth [Knu2, sec.

4.6.3] discusses the closely related problem of computing a™ using a minimum number of multiplications. This
is analogous to the problem of multiplying by musing only addition instructions. A compiler algorithm for
computing mx is described in [Bern].

http:// /?xmlid=0-201-91465-4/biblio#bib39
http:// /?xmlid=0-201-91465-4/biblio#bib5

Chapter 9. Integer Division

Preliminaries

Multiword Division

Unsigned Short Division from Signed Division

Unsigned Long Division

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

9-1 Preliminaries

This chapter and the following one give a number of tricks and algorithms involving “computer division" of
integers. In mathematical formulas we use the expression x/y to denote ordinary rational division, x +y to

denote signed computer division of integers (truncating toward 0), and ** + ¥ to denote unsi gned computer
division of integers. Within C code, X/ y of course denotes computer division, unsigned if either operand is

unsigned, and signed if both operands are signed.

Division isacomplex process, and the algorithms involving it are often not very elegant. It is even a matter of
judgment as to just how signed integer division should be defined. Most high-level languages and most
computer instruction sets define the result to be the rational result truncated toward 0. This and two other
possibilities are illustrated below.

truncati ng nodul us fl oor
7+3 = 2 reml 2 reml 2 reml
(-7)=+3 = -2 rem-1 -3 rem?2 -3 rem?2
7+(-3) = -2 reml -2 reml -3 rem-2
(-7)+(-3) = 2 rem-1 3 rem?2 2 rem-1

The relation dividend = quotient * divisor + remainder holds for all three possibilities. We define "modulus"

[1]
division by requiring that the remainder be nonnegative. ~ We define "floor" division by requiring that the

guotient be the "floor" of the rational result. For positive divisors, modulus and floor division are equivalent. A
fourth possibility, seldom used, rounds the quotient to the nearest integer.

(U1} know I will be taken to task for this nomenclature, because there is no universal agreement that "modulus” implies
"nonnegative." Knuth's "mod" operator [Knul] is the remainder of floor division, which is negative (or 0) if the divisor is

negative. Several programming languages use "mod" for the remainder of truncating division. However, in
mathematics "modulus” is sometimes used for the magnitude of a comple x number (nonnegative), and in congruence
theory the modulus is generally assumed to be positive.

One advantage of modulus and floor division is that most of the tricks simplify. For example, division by 2n
can be replaced by a shift right signed of n positions, and the remainder of dividing x by 2" is given by the
logical and of x and 2" - 1. | suspect that modulus and floor division more often give the result you want. For
example, suppose you are writing a program to graph an integer-valued function, and the values range from
imin to imax. Y ou want to set up the extremes of the ordinate to be the smallest multiples of 10 that include
imin and imax. Then the extreme values are simply (imin <+ 10) * 10 and ((imax + 9) + 10) * 10 if modulus or
floor division is used. If conventional division is used, you must evaluate something like:

if (imn >=0) gnmn (imn/10)*10;
el se gmn = ((imn - 9)/10)*10;
i f (imax >= 0) gnmax ((imax + 9)/10)*10;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09footnote01#ch09footnote01
http:// /?xmlid=0-201-91465-4/biblio#bib38

el se gmax = (i max/10)*10;

Besides the quotient being more useful with modulus or floor division than with truncating division, we
speculate that the nonnegative remainder is probably wanted more often than a remainder that can be negative.

It is hard to choose between modulus and floor division, because they differ only when the divisor is negative,
which is unusual. Appealing to existing highlevel languages does not help, because they amost universally use
truncating division for X/ y when the operands are signed integers. A few give floating-point numbers, or

rational numbers, for the result. Looking at remainders, there is confusion. In Fortran 90, the MOD function
gives the remainder of truncating division and MODUL O gives the remainder of floor division (which can be

negative). Similarly, in Common Lisp and ADA, REM isthe remainder of truncating division, and MOD isthe
remainder of floor division. In PL/I, MOD is always nonnegative (it is the remainder of modulus division). In

Pascal, A nod Bisdefined only for B > 0, and then it is the nonnegative value (the remainder of either
modulus or floor division).

[2]

Anyway, we cannot change the world even if we knew how we wanted to changeit, soinwhat followswe
will use the usual definition (truncating) for x + .

2l Some do try. IBM's PL.8 language uses modulus division, and Knuth's MMIX machine's division instruction uses
floor division [MMIX].

A nice property of truncating division isthat it satisfies

(—n)+d = n+(—-d) = —(n+d), for d+0.

However, care must be exercised when applying this to transform programs, because if n or d is the maximum
negative number, -n or -d cannot be represented in 32 bits. The operation (-231) + (-1) is an overflow (the result
cannot be expressed as a signed quantity in two's-complement notation), and on most machines the result is
undefined or the operation is suppressed.

Signed integer (truncating) division is related to ordinary rational division by

Equation 1

‘n/d |, if d20,nd=0,

n+d = -
[n/d), if d#0,nd<0.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09footnote02#ch09footnote02
http:// /?xmlid=0-201-91465-4/biblio#bib48

Unsigned integer division—that is, division in which both n and d are interpreted as unsigned integers—
satisfies the upper portion of (1).

In the discussion that follows, we make use of the following elementary properties of arithmetic, which we
don't prove here. See [Knul] and [GKP] for interesting discussions of the floor and ceiling functions.

Theorem D1. For x real, k an integer,

[x] = -[-x] [x]=-[-x]
x—1l<|lx]l<x x<[xlex+1

lx|gx<|x]+1 (x]-1<x=[x]

xzke|xl=2k y2he|x| gk

x>k=|x|=2k x<k=|x|=k

x<k= |y]skh=x<hk+ 1 xzk=x|zk=xk-1

yr<ke|x|<k x>he|x|=k

Theorem D2. For n, d integers, d > 0,
nl - |'u d+ 1| g |0 z|ntd-1]
i d el el

Ifd<O:

I-*EJ = |-’_I_'“r_ I-‘ anel (E-‘ = \-’—H' d+ lJ-
d o |]

Theorem D3. For x real, d an integer = =)

LLx|/d] = Lx/d] and [[x)/d]=Tx/d].

http:// /?xmlid=0-201-91465-4/biblio#bib38
http:// /?xmlid=0-201-91465-4/biblio#bib18

Corollary. For a, breal, b ?-50, d an integer 730,

(3)a]=sa] e [[5]a]= [}

Theorem DA4. For n, dintegers, d 730, and x real,

I-:—;-&J'J = LE’J if 0<x<

. and j—I-i*.L'-‘: mlif -
ef I-If I-r:.f.‘

In the theorems below, rem(n, d) denotes the remainder of n divided by d. For negative d, it is defined by rem
(n, -d) = rem(n, d), asin truncating and modulus division. We do not use rem(n, d) with n < 0. Thus, for our
use, the remainder is always nonnegative.

Theorem D5. For n =0, d 70,

Zrem(n, d) or 2rem(n, d) + 1 or
remi2n, d) = remin, d) or and remi(2Zn+1,d) = rem{#, d) o
2rem(n, d) — |d|, 2rem(n, d) —|d| + 1

(whichever valueis greater than or equal to 0 and less than |d]).

Theorem D6. For n :—}O, d ?-50,

rem(2n, 2d) = 2rem(n, d).

Theorems D5 and D6 are easily proved from the basic definition of remainder—that is, that for some integer g
it satisfies

n=gd+remin, d) with 0<rem(n d)<|d|,

provided n 20and d 70 (n and d can be non-integers, but we will use these theorems only for integers).

9-2 Multiword Division

Asin the case of multiword multiplication, multiword division may be done by, basically, the traditional grade-
school method. The details, however, are surprisingly complicated. Figure 9-1 is Knuth's Algorithm D [Knu2

sec. 4.3.1], coded in C. The underlying form of division it usesis 32 + 10 = 32, (Actually, the quotient of
these underlying division operationsis at most 17 bitslong.)

Figure 9-1 Multiword integer division, unsigned , .

I nt di vimu(unsi gned short g[], unsigned short r[],
const unsigned short u[], const unsigned short v[],
int m int n) {

const unsigned b = 65536; // Nunber base (16 bits).
unsi gned short *un, *vn; [// Nornmalized formof u, v.

unsi gned ghat; /1l Estimated quotient digit.
unsi gned rhat; /1 A remai nder.
unsi gned p; /1l Product of two digits.
int s, i, j, t, k;
if (m<n]|| n<=0]] v[n-1] == 0)

return 1; /1 Return if invalid param
If (n==1) { /| Take care of

k = 0; /'l the case of a

for (j =m- 1, j >=0; j--) { /'l single-digit
alj] = (k*b + u[j])/v[O]; /1l divisor here.

B RO

if (r !'= NULL) r[O0] = k;

return O;

}

/'l Normalize by shifting v left just enough so that
/1l its high-order bit is on, and shift u left the

/'l same anount. W may have to append a hi gh-order

/1 digit on the dividend; we do that unconditionally.

s =nlz(v[n-1]) - 16; /Il 0 <= s <= 16.
vn = (unsigned short *)alloca(2*n);

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list01#ch09list01
http:// /?xmlid=0-201-91465-4/biblio#bib39

for (i =n- 1; i >0; i1--)
vn[i] = (v[i] << s) | (v[i-1] >> 16-s);
vn[0] = v[0] << s;

un = (unsigned short *)alloca(2*(m+ 1));
un[m = u[m1l] >> 16-s;
for (i =m- 1; i >0; i--)
un[i] = (u[i] <<'s) | (u[i-1] >> 16-59);
un[0] = u[0] << s;
for (j = m-n; j >=0; j--) { /1 Main | oop.
/1 Conpute estimate ghat of q[j].
ghat = (un[j+n]*b + un[j+n-1])/vn[n-1];
rhat = (un[j+n]*b + un[j+n-1]) - ghat*vn[n-1];
again:
If (ghat >= b || ghat*vn[n-2] > b*rhat + un[j+n-2])
{ ghat = ghat - 1;
rhat = rhat + vn[n-1];
If (rhat < b) goto agai n;

}

/1 Multiply and subtract.
k = 0;

for (i =0; i <n; i++) {

p = ghat*vn[i];
t =un[i+] - k - (p & OXFFFF);
un[i+] =t;
k = (p >> 16) - (t >> 16);
}
t = un[j+n] - Kk;
un[j+n] = t;

afj] = ghat; /| Store quotient digit.
if (t <0) { /[l 1f we subtracted too
alj] = ql[j] - 1; /1 much, add back.
k = 0;
for (i =0; i <n; i++) {

t =un[i+] + vn[i] + k;
un[i+j] =t;
k =t >> 16;

}

un[j+n] = un[j+n] + k;

} /] End j.
/] 1f the caller wants the remai nder, unnornalize
/[l 1t and pass it back.
if (r !'= NULL) {
for (i =0; i < n; 1I++)
r[i] = (un[i] >>s) | (un[i+l] << 16-8);
}

return O;

The algorithm processes its inputs and outputs a halfword at atime. Of course, we would prefer to process a
fullword at atime, but it seems that such an algorithm would require an instruction that does

64 £ 32 = 32jyision. We assume here that either the machine does not have that instruction or it is hard
to access from our high-level language. Although we generally assume the machine has

32232 = 32jvison, for thisproblem 32 + 16 = 10 gtfices

Thus, for thisimplementation of Knuth's algorithm, the base b is 65536. See [Knu2] for most of the
explanation of this algorithm.

The dividend u and the divisor v arein "little-endian” order—that is,u [O] andv [O] aretheleast
significant digits. (The code works correctly on both big-and little-endian machines.) Parameters mand n are
the number of halfwordsin u and v, respectively (Knuth defines mto be the length of the quotient). The caller
supplies space for the quotient g and, optionally, for the remainder r . The space for the quotient must be at
least m- n + 1 hafwords, and for the remainder, n hafwords. Alternatively, avaue of NULL can be given
for the address of the remainder to signify that the remainder is not wanted.

The algorithm requires that the most significant digit of the divisor, v[n- 1] , be nonzero. This simplifiesthe
normalization steps and helps to ensure that the caller has alocated sufficient space for the quotient. The code

checksthat v[n- 1] isnonzero, and also the requirements that n 21 and m2n. If any of these conditions
areviolated, it returns with an error code (return value 1).

After these checks, the code performs the division for the ssmple case in which the divisor is of length 1. This
case isnot singled out for speed; the rest of the algorithm requires that the divisor be of length 2 or more.

If the divisor is of length 2 or more, the algorithm normalizes the divisor by shifting it left just enough so that
its high-order bit is 1. The dividend is shifted left the same amount, so the quotient is not changed by these
shifts. As explained by Knuth, these steps are necessary to make it easy to guess each quotient digit with good
accuracy. The number of leading zeros function, nlz(x), is used to determine the shift amount.

In the normalization steps, new space is allocated for the normalized dividend and divisor. Thisis done because
it isgeneraly undesirable, from the caller's point of view, to alter these input arguments, and because it may be

http:// /?xmlid=0-201-91465-4/biblio#bib39

impossible to alter them—they may be constants in read-only memory. Furthermore, the dividend may need an
additional high-order digit. C's"alloca’ function isideal for allocating this space. It is usually implemented
very efficiently, requiring only two or three in-line instructions to allocate the space and no instructions at all to
freeit. The space is allocated on the program's stack, in such away that it is freed automatically upon
subroutine return.

In the main loop, the quotient digits are cranked out one per loop iteration, and the dividend is reduced until it
becomes the remainder. The estimate ghat of each quotient digit, after being refined by the steps in the loop

labelled agai n, isalways either exact or too high by 1.

The next steps multiply ghat by the divisor and subtract the product from the current remainder, asin the

grade school method. If the remainder is negative, it is necessary to decrease the quotient digit by 1 and either
re-multiply and subtract or, more simply, adjust the remainder by adding the divisor to it. This need be done at
most once, because the quotient digit was either exact or 1 too high.

Lastly, the remainder is given back to the caller if the address of whereto put it is non-null. The remainder must
be shifted right by the normalization shift amount S.

The "add back™ steps are executed only rarely. To seethis, observe that the first calculation of each estimated
quotient digit ghat isdone by dividing the most significant two digits of the current remainder by the most

significant digit of the divisor. The stepsin the "again" loop amount to refining ghat to be the result of

dividing the most significant three digits of the current remainder by the most significant two digits of the
divisor (proof omitted; convince yourself of this by trying some examples using b = 10). Note that the divisor

is greater than or equal to b/2 (because of normalization) and the dividend is less than or equal to b timesthe
divisor (because each remainder is less than the divisor).

How accurate is the quotient estimated by using only three dividend digits and two divisor digits? Because
normalization was done, it can be shown to be quite accurate. To see this somewhat intuitively (not aformal
proof), consider estimating u/v in thisway for base ten arithmetic. It can be shown that the estimate is always
high (or exact). Thus, the worst case occurs if truncation of the divisor to two digits decreases the divisor by as
much as possible in the sense of relative error, and truncation of the dividend to three digitsincreasesit by as
little as possible (which is 0), and if the dividend is as large as possible. This occurs for the case 49900. ..

0/5099...9, which we estimate by 499/50 = 9.98. The true result is approximately 499/51 ~~9.7843. The
difference of 0.1957 reveals that the estimated quotient digit and the true quotient digit, which are the floor
functions of these ratios, will differ by at most 1, and this will occur about 20% of the time (assuming the
guotient digits are uniformly distributed). Thisin turn means that the "add back" steps will be executed about
20% of the time.

Carrying out this (non-rigorous) analysis for a general base b yields the result that the estimated and true
guotients differ by at most 2/b. For b = 65536, we again obtain the result that the difference between the

estimated and true quotient digitsis at most 1, and this occurs with probability 2/65536 ~=0.00003. Thus the
"add back" steps are executed for only about 0.003% of the quotient digits.

An example that requires the add back step is, in decimal, 4500/501. A similar example for base 65536 is
Ox7FFF 800000000000/0x800000000001.

We will not attempt to estimate the running time of this entire program, but ssmply note that for large mand n,
the execution time is dominated by the multiply/subtract loop. On a good compiler thiswill compile into about
16 basic RISC instructions, one of which ismultiply. The"f or | " loop is executed n times, and the multiply/

subtract loop m - n + 1 times, giving an execution time for this part of the program of (15 + mul)n(m- n + 1)
cycles, where mul is the time to multiply two 16-bit variables. The program also executesm- n + 1 divide
instructions and one number of leading zeros instruction.

Signed Multiword Division

We do not give an algorithm specifically for signed multiword division, but merely point out that the unsigned
algorithm can be adapted for this purpose as follows:

1. Negatethedividendif it is negative, and similarly for the divisor.
2. Convert the dividend and divisor to unsigned representation.

3. Usethe unsigned multiword division algorithm.

4. Convert the quotient and remainder to signed representation.

5. Negate the quotient if the dividend and divisor had opposite signs.
6. Negate the remainder if the dividend was negative.

These steps sometimes require adding or deleting a most significant digit. For example, assume for ssmplicity
that the numbers are represented in base 256 (one byte per digit), and that in the signed representation, the high-
order bit of the sequence of digitsisthe sign bit. Thisis much like ordinary two's-complement representation.
Then, adivisor of 255, which has signed representation 0xO0OFF, must be shortened in step 2 to OxFF. Similarly,
if the quotient from step 3 begins with a 1-bit, it must be provided with aleading 0-byte for correct
representation as a signed gquantity.

9-3 Unsigned Short Division from Signed Division

By "short division" we mean the division of one single word by another (e.g., 32+32 ='r"32). It isthe form of
division provided by the "/" operator, when the operands are integers, in C and many other high-level
languages. C has both signed and unsigned short division, but some computers provide only signed division in
their instruction repertoire. How can you implement unsigned division on such a machine? There does not seem
to be any redlly slick way to do it, but we offer here some possibilities.

Using Signed Long Division

Even if the machine has signed long division (64+32 =|'-"32), unsigned short division is nhot as simple as you
might think. In the XL C compiler for the IBM RS/6000, it isimplemented asillustrated below for

g—(nxd).

if m < dthen g0
elseifd = 1thengen

elseif d <1 then g « 1

else g (0| m)+d

o 3'
Thethird lineisreally testing to seeif d=2 *If disalgebraically lessthan or equal to 1 at this point, then
becauseit isnot equal to 1 (from the second line), it must be algebraically less than or equal to 0. We don't care
about the case d = 0, so for the cases of interest, if the test on the third line evaluates to true, the sign bit of dis

u 531 i
on, that is, d > 27" gecause from the firgt line it is known that ® 2 @ and because n cannot exceed
23 1, nid = 1.

The notation on the fourth line means to form the double-length integer consisting of 32 0-bits followed by the
32-bit quantity n, and divideit by d. Thetest for d = 1 (second line) is necessary to ensure that this division

I 3,]
does not overflow (it would overflow if ™ = 2" and then the quotient would be undefined).

3
By commoning the comparisons on the second and third lines, - the above can be implemented in 11
instructions, three of which are branches. If it is necessary that the divide be executed when d = 0, to get the
overflow interrupt, then the third line can be changed to "elseif d < 0 then g +=1," giving a 12-instruction
solution on the RS/6000.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09footnote03#ch09footnote03

B3] One execution of the RS/6000's compare instruction sets multiple status bits indicating less than, greater than, or
equal.

! 1 i
It isasimple matter to alter the above code so that the probable usual cases (2=d <2) do not go through

<1.

so many tests (begin with d ..), but the code volume increases slightly.

Using Signed Short Division

If signed long division is not available, but signed short division is, then # 4 can be implemented by
somehow reducing the problem to the case n, d < 231, and using the machine's divide instruction. If

d 231 U
= <" +then # + can only be 0 or 1, so thiscase is easily dispensed with. Then, we can reduce the dividend

by using the fact that the expression ({17 +2) + d) %2 approximates # <€ with an error of only 0 or 1. This
leads to the following method:

1 il d <0 thenif n = d then g — 0

2 else g 1

3. else do

4. g+ ((nit2)+d)x2
5, ren-—gd

6. ifrsdthenge—q+1
7. end

: : : N, I =S B L :
Thetestd<Oonlinelisredly testing to determineif * == -If * =< +then the largest the quotient could
beis(232- 1) + 231 = 1, so the first two lines compute the correct quotient.

Line 4 represents the code shift right unsigned 1, divide, shift left 1. Clearly, ® ¥ 2 < 2*'. and at this point

193
d <27 aswell, so these quantities can be used in the computer's signed division instruction. (If d = 0,
overflow will be signaled here.)

The estimate computed at line4 is

g = LLns2]7d]-2 = [n/(2d)] 2 = ”_“3"}'[”*3‘”'_
¢

where we have used the corollary of Theorem D3. Line 5 computes the remainder corresponding to the
estimated quotient. It is

_ ’
r=n-"2 remin, "mf)' = remin, 2d).

o

Thus, O Sr<2d.Ifr< d, then g isthe correct quotient. If r :_}d, then adding 1 to g gives the correct quotient
(the program must use an unsigned comparison here because of the possibility that r :_:"231).

By moving the load immediate of 0 into g ahead of the comparison <4, and codi ng the assignment g #—1in
line 2 as abranch to the assignment g +=q + 1 in line 6, this can be coded in 14 instructions on most machines,

four of which are branches. It is straightforward to augment the code to produce the remainder aswell: to line 1
append r #=n, to line 2 append r +=n - d, and to the "then" clausein line 6 append r +=r - d. (Or, at the cost of
amultiply, simply append r #=n - gd to the end of the whole sequence.)

An dternativefor linesland 2is

il 7 & d then g < 0

else il d <0 then g « 1,

which can be coded a little more compactly, for atotal of 13 instructions, three of which are branches. But it
executes more instructions in what is probably the usual case (small numbers with n > d).

Using predicate expressions, the program can be written

1 il d <0 then g « (n 5 d)

2. else do

3 ge—((nEL2)+d)=2

4 ren-—gd
5 qe—q+(rsd)
6. end

which saves two branchesif thereis away to evaluate the predicates without branching. On the Compag Alpha
they can be evaluated in one instruction (CMPULE); on MIPS they take two (SLTU, XORI). On most

computers, they can be evaluated in four instructions each (three if equipped with afull set of logic

instructions), by using the expression for * s¥ given in "Comparison Predicates’ on page 21, and simplifying
because on line 1 of the program above it is known that d3; = 1, and on line 5 it isknown that d3; = 0. The
expression simplifiesto

nid = (né&=(n-d))=31 onlinel, and

rid = (r| =(r-d))= 31 online5.

We can get branch-free code by forcing the dividend to be 0 when d22M. Then, the divisor can be used in
the machine's signed divide instruction, because when it is misinterpreted as a negative number, the result is set
to 0, which iswithin 1 of being correct. We'll still handle the case of alarge dividend by shifting it one position
to the right before the division, and then shifting the quotient one position to the left after the division. This
gives the following program (ten basic RISC instructions):

L teds3l

2 n'—n & —t

3 ge—((n" £2)+d)x2
4 ren-—gd

5. g g+ (rzd)

http:// /?xmlid=0-201-91465-4/ch02lev1sec11#ch02lev1sec11

9-4 Unsigned Long Division

By "long division" we mean the division of a doubleword by a single word. For a 32-bit machine, thisis
64 £32 = 32 givision, with the result unspecified in the overflow cases, including division by O.

Some 32-bit machines provide an instruction for unsigned long division. Itsfull capability, however, gets little
use, because only 32 £32 = 32jivision is accessible with most high-level languages. Therefore, a computer

designer might elect to provide only 32132 d division, and would probably want an estimate of the
execution time of a subroutine that implements the missing function. Here we give two agorithms for
providing this missing function.

Hardware Shift-and-Subtract Algorithms

Asafirst attempt at doing long division, we consider doing what the hardware does. There are two algorithms
commonly used, called restoring and nonrestoring division [H& P, sec. A-2; EL]. They are both basically "shift-
and-subtract” algorithms. In the restoring version, shown below, the restoring step consists of adding back the
divisor when the subtraction gives a negative result. Here x, y, and z are held in 32-bit registers. Initialy, the
double-length dividend is x || y, and the divisor is z. We need a single-bit register ¢ to hold the overflow from
the subtraction.

do i« 1 to 32

cllxlly e 2{x|ly) M Shitft lett one.
cllx «— (ellx)=(0b01z) H Subtract (33 hits).
¥ — /' Set one bit of quotient.

ifethenellx «—(ellx)+{0b011z) /f Restore.
end

Upon completion, the quotient isin register y and the remainder isin register x.

The algorithm does not give a useful result in the overflow cases. For division of the doubleword quantity x || y
by 0, the quotient obtained is the one's-complement of x, and the remainder obtained isy. In particular,

010=2%-1 rem 0. The other overflow cases are difficult to characterize.

It might be useful if, for nonzero divisors, the algorithm would give the correct quotient modulo 232, and the
correct remainder. However, the only way to do this seems to be to make the register represented by c || X || y

above 97 bitslong, and do the loop 64 times. Thisis doing 62 232 = 64 givision. The subtractions would

http:// /?xmlid=0-201-91465-4/biblio#bib31
http:// /?xmlid=0-201-91465-4/biblio#bib14

still be 33-bit operations, but the additional hardware and execution time make this refinement probably not
worthwhile.

This algorithm is difficult to implement exactly in software, because most machines do not have the 33-bit
register that we have represented by c || x. Figure 9-2, however, illustrates a shift-and-subtract algorithm that

reflects the hardware algorithm to some extent.

Thevariablet isused for adevice to make the comparison come out right. We want to do a 33-bit comparison
after shifting x | | y. If thefirst bit of x is 1 (before the shift), then certainly the 33-bit quantity is greater than
the divisor (32 bits). Inthiscase, X | t isal 1's, so the comparison gives the correct result (true). On the other
hand, if the first bit of X is0, then a 32-bit comparison is sufficient.

The code of the algorithm in Figure 9-2 executes in 321 to 385 basic RISC instructions, depending upon how

often the comparison istrue. If the machine has shift |eft double, the shifting operation can be done in one
instruction, rather than the four used above. This would reduce the execution time to about 225 to 289
instructions (we are allowing two instructions per iteration for loop control).

Figure 9-2 Divide long unsigned, shift-and-subtract algorithm.

unsi gned di vl u(unsi gned x, unsigned y, unsigned z) {
/1 Divides (x || y) by z.
int i1;

unsi gned t;

for (i =1; 1 <= 32; i++) {

t = (int)x >> 31; [l Al 1's if x(31) = 1.
X = (x <<1) | (y > 31); /] Shift x || y left
y =y << 1; /'l one bit.
if (x| t) >=2) {
X = X - Z;
y =y + 1
}
}
return vy, [/ Remai nder 1s X.

The algorithm in Figure 9-2 can be used to do 32 £32 = 32 divison by supplying X = 0. The only
simplification that resultsisthat the variablet can be omitted, as its value would aways be 0.

Below isthe nonrestoring hardware division algorithm (unsigned). The basic idea is that, after subtracting the
divisor z from the 33-bit quantity that we denote by c || x, there isno need to add back zif the result was

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list02#ch09list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list02#ch09list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list02#ch09list02

negative. Instead, it suffices to add on the next iteration, rather than subtract. Thisis because adding z (to
correct the error of having subtracted z on the previous iteration), shifting left, and subtracting zis equivalent to
adding z (2(u + 2) - z= 2u + 2). The advantage to hardware is that there is only one add or subtract operation on

[4]
each loop iteration, and the adder is likely to be the slowest circuit intheloop. An adjustment to the

remainder is needed at the end, if it is negative. (No corresponding adjustment of the quotient is required.)

[4] Actually, the restoring division algorithm can avoid the restoring step by putting the result of the subtraction in an
additional register, and writing that register into x only if the result of the subtraction (33 bits) is nonnegative. But in
some implementations this may require an additional register and possibly more time.

The input dividend is the doubleword quantity x || y, and the divisor is z. Upon completion, the quotient isin
register y and the remainder isin register x.

c =1
do e | to 32
if ¢ = 0 then do

cllxlly & 2(x Il y) M Shitt lett one.
cllx—(cllx)=(0b01z) & Subtract divisor.
end
else do
cllxlly & 2(xIly) ff Shift left one.
cllx—{cllx)+{0b0Iz) / Add divisor,
end
¥ & € /1 Set one bit of quotient.
end
ife =1thenx e&=x+2z M Adjust remainder if negative.

This does not seem to adapt very well to a 32-bit algorithm.

The 801 minicomputer (an early experimental RISC machine built by IBM) had a divide step instruction that
essentially performed the steps in the body of the loop above. It used the machine's carry status bit to hold c,
and the MQ (a 32-hit register) to hold y. A 33-bit adder/subtracter is needed for its implementation. The 801's
divide step instruction was a little more complicated than the loop above, because it performed signed division
and it had an overflow check. Using it, adivision subroutine can be written that consists essentially of 32
consecutive divide step instructions followed by some adjustments to the quotient and remainder to make the
remainder have the desired sign.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09footnote04#ch09footnote04

Using Short Division

An algorithm for 64 £ 32 = 32 givision can be obtained from the multiword division algorithm of Figure 9-1

on page 141, by specializing it to the case m= 4, n = 2. Severa other changes are necessary. The parameters
should be fullwords passed by value, rather than arrays of halfwords. The overflow condition is different; it
occursif the quotient cannot be contained in asingle fullword. It turns out that many simplifications to the
routine are possible. It can be shown that the guess ghat isawaysexact; it is exact if the divisor consists of

only two halfword digits. This means that the "add back" steps can be omitted. If the "main loop" of Figure 9-1
and the loop within it are unrolled, some minor simplifications become possible.

The result of these transformations is shown in Figure 9-3. Thedividendisin ul and uO, with ul containing
the most significant word. The divisor is parameter V. The quotient is the returned value of the function. If the
caller provides a non-null pointer in parameter r , the function will return the remainder in the word to which r
points.

For an overflow indication, the program returns aremainder equal to the maximum unsigned integer. Thisisan
impossible remainder for avalid division operation, because the remainder must be less than the divisor. In the
overflow case, the program also returns a quotient equal to the maximum unsigned integer, which may be an
adequate indicator in some cases in which the remainder is not wanted.

The strange expression (- s >> 31) inthe assignment to u32 is supplied to make the program work for the
case S = 0 on machines that have mod 32 shifts (e.g., Intel x86).

Experimentation with uniformly distributed random numbers suggests that the bodies of the "again" loops are
each executed about 0.38 times for each execution of the function. This gives an execution time, if the
remainder is not wanted, of about 52 instructions. Of these instructions, one is number of leading zeros, two are
divide, and 6.5 are multiply (not counting the multiplications by b, which are shift's). If the remainder is

wanted, add six instructions (counting the store of 1), one of which is multiply.

What about a signed version of di vI u? It would probably be difficult to modify the code of Figure 9-3, step

by step, to produce a signed variant. That algorithm, however, may be used for signed division by taking the
absolute value of the arguments, running di vI u, and then complementing the result if the signs of the original

arguments differ. There is no problem with extreme values such as the maximum negative number, because the
absolute value of any signed integer has a correct representation as an unsigned integer. Thisalgorithm is
shown in Figure 9-4.

Figure 9-3 Divide long unsigned, using fullword division instruction.

unsi gned di vl u(unsi gned ul, unsigned uO, unsigned v,
unsi gned *r) {

http:// /?xmlid=0-201-91465-4/ch09lev1sec2#ch09list01
http:// /?xmlid=0-201-91465-4/ch09lev1sec2#ch09list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list03#ch09list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list03#ch09list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list04#ch09list04

const unsigned b = 65536; // Nunber base (16 bits).

unsi gned unl, unO, /1 Norm dividend LSD s.
vnl, vnoO, /1 Norm divisor digits.
gl, 9o, /1l Quotient digits.
un32, un2l, unlO,// Dividend digit pairs.
r hat ; /'l A remai nder.

int s; /1 Shift anount for norm

if (ul >=v) { /[l 1f overflow, set rem

1 f (r !'= NULL) /1 to an inpossible value,
*r = OXFFFFFFFF; /1l and return the | argest
return OXFFFFFFFF; } /'l possible quotient.

s = nlz(v); /Il 0 <= s <= 31.

V = Vv << s; /'l Normalize divisor.

vnl = v >> 16; /1 Break divisor up into

vnO0 = v & OxFFFF; /[l two 16-bit digits.

un32 = (ul << s) | (u0 >> 32 - s) & (-s >> 31);

unl0 = u0 << s; [/ Shift dividend |eft.

unl = unl0 >> 16; /'l Break right half of

un0 = unl0 & OxFFFF; /1l dividend into two digits.

gl = un32/vnl, /'l Conpute the first

rhat = un32 - ql*vnl; /1l quotient digit, ql.

agai nl:

iIf (gl >= b || gql*vnO > b*rhat + unl) {

ql = ql - 1;

rhat = rhat + vnl;
If (rhat < b) goto againl;}

un2l = un32*b + unl - ql*v; // Miltiply and subtract.

g0 = un2l1/vnl; /'l Conpute the second
rhat = un21 - gO*vnl; /1l quotient digit, qO.
agai n2:
iIf (g0 >= Db || g0*vnO > b*rhat + un0) {
q0 = q0 - 1;

rhat = rhat + vnl;
if (rhat < b) goto again2;}

i f (r !'= NULL) [l 1f remainder is wanted,
*r = (un21l*b + un0 - qO0*v) >> s; /[l return it.
return gql*b + qO;
}

Figure 9-4 Divide long signed, using divide long unsigned.

int divls(int ul, unsigned uO, int v, int *r) {
int g, uneg, vneg, diff, borrow

uneg = ul >> 31; [/ -1 if u < 0.

I f (uneg) { /'l Conpute the absolute
u0 = -u0; /1l value of the dividend u.
borrow = (u0O !'= 0);
ul = -ul - borrow}

vneg = v >> 31; /[l -1 1if v < 0.

v = (v ” vneg) - vneg; /'l Absol ute val ue of v.

I f ((unsigned)ul >= (unsigned)v) goto overfl ow

g = divlu(ul, u0, v, (unsigned *)r);

diff = uneg ™ vneg; /'l Negate q if signs of
qgq=(qg™dff) - diff; /1 u and v differed.
I f (uneg && r !'= NULL)

*r o= -*r;

if ((diff ~q) <0& q!=0){ // If overflow

overfl ow /'l set remainder
i1f (r !'= NULL) /1l to an inpossible value,
*r = 0x80000000; /1 and return the | argest
g = 0x80000000; } /| possible neg. quotient.
return q;
}

It is hard to devise really good code to detect overflow in the signed case. The algorithm shown in Figure 9-4
makes a preliminary determination identical to that used by the unsigned long division routine, which ensures
that |u/v] <232, After that, it is necessary only to ensure that the quotient has the proper sign or is 0.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch09lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch09list04#ch09list04

Chapter 10. Integer Division by Constants

On many computers, division is very time consuming and is to be avoided when possible. A value of 20 or
more elementary add times is not uncommon, and the execution time is usually the same large value even when
the operands are small. This chapter gives some methods for avoiding the divide instruction when the divisor is
aconstant.

10-1 Signed Division by a Known Power of 2

Apparently, many people have made the mistake of assuming that a shift right signed of k positions divides a
number by 2%, using the usual truncating form of division [GLS2]. It's alittle more complicated than that. The

code shown below computes q = n + 2K, for 1 <k Sa1 [Hop].

shrsi t,n, k-1 Form t he integer

shri t,t,32-k 2**k - 1 if n < 0, else O.
add t,n,t Add it to n,

shrsi q,t,k and shift right (signed).

It is branch-free. It a'so simplifiesto three instructions in the common case of division by 2 (k= 1). It does,
however, rely on the machine's being able to shift by alarge amount in a short time. The case k = 31 does not

make too much sense, because the number 231 is not representable in the machine. Nevertheless, the code does
produce the correct result in that case (whichisq=-1if n=-231and q = 0 for al other n).

To divide by -2K, the above code may be followed by a negate instruction. There does not seem to be any better
way to do it.

The more straightforward code for dividing by 2Kis

bge n, | abel Branch if n >= 0.
addi n,n, 2**k-1 Add 2**k - 1 to n,
| abel shrsi n,n,k and shift right (signed).

Thiswould be preferable on a machine with slow shifts and fast branches.

PowerPC has an unusual device for speeding up division by a power of 2 [GGS]. The shift right signed

instructions set the machine's carry bit if the number being shifted is negative and one or more 1-bits are shifted
out. That machine also has an instruction for adding the carry bit to aregister, denoted addze. Thisalows

division by any (positive) power of 2 to be done in two instructions:

shrsi q,n, k
addze q, g

A singleshr si of k positions does a kind of signed division by 2X that coincides with both modulus and floor

division. This suggests that one of these might be preferable to truncating division for computers and HLL's to
use. That is, modulus and floor division mesh with shr si better than does truncating division, permitting a

compiler to trandate the expression n/2to an shr si . Furthermore, shr si followed by neg (negate) does

http:// /?xmlid=0-201-91465-4/biblio#bib20
http:// /?xmlid=0-201-91465-4/biblio#bib29
http:// /?xmlid=0-201-91465-4/biblio#bib16

modulus division by -2K, which is a hint that maybe modulus division is best. (However, thisis mainly an
aesthetic issue. It is of little practical significance because division by a negative constant is no doubt extremely
rare.)

10-2 Signed Remainder from Division by a Known Power of 2

If both the quotient and remainder of n + 2K are wanted, it is simplest to compute the remainder r fromr = q *
2K - n. This requires only two instructions after computing the quotient g

shli r,q,k
sub r,r,n

To compute only the remainder seems to require about four or five instructions. One way to compute it isto use
the four-instruction sequence above for signed division by 2, followed by the two instructions shown
immediately above to obtain the remainder. This results in two consecutive shift instructions that can be
replaced by an and, giving asolution in five instructions (four if k = 1):

shrsi t,n, k-1 Form the integer

shri t,t,32-k 2**k - 1 1f n <0, else 0.
add t,n,t Add it to n,

andi t,t,-2**k clear rightnost k bits,
sub r,n,t and subtract it fromn.

Another method is based on

n&(28-1), nz0,
—((—n) & (ER— 1)), n<O.

remin, 2%) =

To usethis, first compute ¥ < == 31, and then

r ((absin) & (2K-1))®1¢) -t

(fiveinstructions) or, fork=1,since(-n) & 1=n & 1,

ri—(m&l)®t)—t

(four instructions). This method is not very good for k > 1 if the machine does not have absolute value
(computing the remainder would then require seven instructions).

Still another method is based on

n& (28~ 1), nz0,
((m+25— 1y & 2K 1)) (2= 1), n=<0.

remin, 2%y =

Thisleadsto

te— (M k-1)32-4k
re—((m+6)& (25 -1)) ¢

(fiveinstructions for k > 1, four for k= 1).
The above methods all work for 1 Sk <31,

Incidentally, if shift right signed is not available, the value that is 2K - 1 for n < 0 and O for n =0 can be
constructed from

H
[1= 31

r':—' [.!'| ﬁ{k}—i‘p

which adds only one instruction.

10-3 Signed Division and Remainder by Non-Powers of 2

The basic trick isto multiply by a sort of reciprocal of the divisor d, approximately 232/d, and then to extract
the leftmost 32 bits of the product. The details, however, are more complicated, particularly for certain divisors
suchas?7.

Let usfirst consider afew specific examples. Theseillustrate the code that will be generated by the general
method. We denote registers as follows:

N - the input integer (numerator)
M- loaded with a"magic number"
t - atemporary register

g - will contain the quotient

I - will contain the remainder

Divide by 3

| i M 0x55555556 Load nmagi ¢ nunber, (2**32+2)/ 3.
mul hs g, M n g = floor(Mn/2**32).

shri t,n, 31 Add 1 toq if

add g,q,t n is negative.

muli t,q,3 Conmput e remai nder from

sub r,n,t r =n - q*3.

Proof. The multiply high signed operation (mul hs) cannot overflow, as the product of two 32-bit integers can
always be represented in 64 bits and mul hs gives the high-order 32 bits of the 64-bit product. Thisis
equivalent to dividing the 64-bit product by 232 and taking the floor of the result, and thisis true whether the

product is positive or negative. Thus, for n =0 the above code computes

22 +2 | |na 2n
“?‘_ 3 :T*“—J_\j"':s-z-ﬂ’J‘

Now, n < 231, because 231 - 1 isthe largest representable positive number. Hence the "error” term 2n/(3 - 232) is

less than 1/3 (and is nonnegative), so by Theorem D4 (page 139) we have 4 = L/3 . \which is the desired
result (Equation (1) on page 138).

For n< 0, thereisan addition of 1 to the quotient. Hence the code computes

1% %
g = 2=+ 2 n 41 = 280 +2n+3-2% | _ [2¥n+2n+ 1
3 o3 3 .23 3.2% ,

where we have used Theorem D2. Hence

no 2n+1
=|z+ .
4 [3-2?1-‘

The error term is nonpositive and greater than -1/3, so by Theorem D4 4 = [n/3] ‘which isthe desired result

(Equation (1) on page 138).

This establishes that the quotient is correct. That the remainder is correct follows easily from the fact that the
remainder must satisfy

n=gd+r,

the multiplication by 3 cannot overflow (because -231/3 Eq E(231 - 1)/3), and the subtract cannot overflow
because the result must be in the range -2 to +2.

The multiply immediate can be done with two add's, or a shift and an add, if either gives an improvement in

http:// /?xmlid=0-201-91465-4/ch09lev1sec1#ch09eq01
http:// /?xmlid=0-201-91465-4/ch09lev1sec1#ch09eq01

execution time.

On many present-day RISC computers, the quotient can be computed as shown above in nine or ten cycles,
whereas the divide instruction might take 20 cycles or so.

Divide by 5

For division by 5, we would like to use the same code as for division by 3, except with amultiplier of (232 +

4)/5. Unfortunately, the error term is then too large; the result is off by 1 for about 1/5 of the values of n =030

in magnitude. However, we can use amultiplier of (233 + 3)/5 and add a shift right signed instruction. The code
IS

| M 0x66666667 Load magi ¢ nunber, (2**33+3)/5.

mul hs g, M n g = floor(Mn/2**32).
shrsi q,q,1

shri t,n, 31 Add 1 toq if

add g,q,t n is negative.

muli t,q,5 Conput e remai nder from
sub r,n,t r = n- g*5.

Proof. The mul hs produces the leftmost 32 bits of the 64-bit product, and then the code shifts this right by
one position, signed (or "arithmetically"). Thisis equivalent to dividing the product by 233 and then taking the
floor of the result. Thus, for n =0 the code computes

233
qz\-" +3iJ=_E+ HH.J-
5 2u]|” |575.2%

For 0 Sn < 281, the error term 3n/5 - 28 is nonnegative and less than 1/5, so by Theorem D4, 4 = Ln/5].

For n < 0 the above code computes

233
q:\.- +3#J+1=[H+3”+I—“
5 2% 5 5.2%

The error term is nonpositive and greater than -1/5, so 4 = [n/57].
That the remainder is correct follows asin the case of division by 3.

The multiply immediate can be done with a shift |eft of two and an add.
Divide by 7

Dividing by 7 creates a new problem. Multipliers of (232 + 3)/7 and (233 + 6)/7 give error terms that are too
large. A multiplier of (234 + 5)/7 would work, but it's too large to represent in a 32-bit signed word. We can
multiply by this large number by multiplying by (234 + 5)/7 - 232 (a negative number), and then correcting the
product by inserting an add. The codeis

| M 0x92492493 WMagi ¢ num (2**34+5)/7 - 2**32.

mul hs g, M n g = floor(Mn/2**32).

add g,q,n g = floor(Mn/2**32) + n.
shrsi q,q, 2 qg = floor(qg/4).

shri t,n, 31 Add 1 toq if

add g,q,t n is negative.

muli t,q,7 Conput e remai nder from
sub r,n,t r=n- q*7.

Proof. It isimportant to note that the instruction "add g, g, n" above cannot overflow. Thisis because q and
n have opposite signs, due to the multiplication by a negative number. Therefore, this"computer arithmetic"

addition is the same as real number addition. Hence for n =0 the above code computes

H-(}” + 5 2"”] J +u]r"4 - H?.-’*’fu +5n-7-2%p4+ 7. EHHJ'MJ
7 232 7.2%

| n Sn
|7 * 7. ?_.’HJ'

o

where we have used the corollary of Theorem D3.

For 0 Sn < 281, the error term 5n/7 - 234 is nonnegative and less than 1/7, so @ = Ln/7].

For n < 0, the above code computes

g = H_(EM; 2, 231]%J+ ﬁ!]f-’-l +1 = ["_-; + ;” ;1: -‘

The error term is nonpositive and greater than -1/7, so 4 = [n/77].

The multiply immediate can be done with a shift left of three and a subtract.

10-4 Signed Division by Divisors 22

At this point you may wonder if other divisors present other problems. We see in this section that they do not;
the three examples given illustrate the only cases that arise (for d :32).

Some of the proofs are a bit complicated, so to be cautious, the work is done in terms of a general word size W.

Given aword sizeW =3 and a divisor d, 2 Sd<2W- 1 we wish to find the least integer m and integer p such
that

Equation l1a

mi | _ | # for 0<n<2"-1_ and
2 i

Equation 1b

el = | 1 for -2W-l<p<-1,
pls el

with 0 Sm< 2Wand p 2 W.

The reason we want the least integer mis that a smaller multiplier may give a smaller shift amount (possibly
zero) or may yield code similar to the "divide by 5" example, rather than the "divide by 7" example. We must
have m ':—:ZW -1 50 the code has no more instructions than that of the "divide by 7" example (that is, we can
handle a multiplier in the range 2W- 1 to 2W- 1 by means of the add that was inserted in the "divide by 7"
example, but we would rather not deal with larger multipliers). We must have p 2w because the generated

code extracts the left half of the product mn, which is equivalent to shifting right W positions. Thus, the total
right shift is W or more positions.

Thereis adistinction between the multiplier m and the "magic number," denoted M. The magic number isthe
value used in the multiply instruction. It is given by

http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec2
http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3
http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3
http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3

1, if0=mac2W-1,

M =
m=2W G2Vl gy 2W
Because (1b) must hold for # = —ds L=md/2" |+ 1 = =1, ynichimplies
Equation 2
me ., 1.
2"

Let n. be the largest (positive) value of n such that (n., d) =d - 1. n. exists because one possibility isn. =d - 1.

It can be calculated from e = L2V 1/d Jd =1 = 2% 1 —rem(2¥- 1, d) - L.y s one of the highest d

admissible values of n, so

Equation 3a

2W-l_dsn <2W-1-1,

and clearly
Equation 3b

n.z2d-1.

Because (1a) must hold for n=n,,

mn | _|n | _ n.—td-1)
2] La d

or

mn. n.+1
=
2F il

Combining thiswith (2) gives

Equation 4

2 2Pn, + |
— <M< —

i d n

¢

Because misto be the least integer satisfying (4), it isthe next integer greater than 2°/d; that is,

Equation 5

2w d = rem(27, d)

il

Combining this with the right half of (4) and simplifying gives

Equation 6

i n (o - rem(27, d)).

The Algorithm

Thus, the algorithm to find the magic number M and the shift amount s from d is to first compute n.,, and then
solve (6) for p by trying successively larger values. If p < W, set p = W (the theorem below shows that this

value of p also satisfies (6)). When the smallest p :_’Wsﬂisfying (6) isfound, miscalculated from (5). Thisis
the smallest possible value of m, because we found the smallest acceptable p, and from (4) clearly smaller
values of p yield smaller values of m. Finally, s=p - Wand M issimply areinterpretation of masasigned
integer (whichis how the mul hs instruction interpretsit).

Forcing p to be at least Wisjustified by the following:
Theorem DCL. If (6) istrue for some value of p, then it istrue for all larger values of p.

Proof. Suppose (6) istrue for p = py. Multiplying (6) by 2 gives

2otly n (2d - 2rem(2", o)),

- P+ 1 " i .. .
From Theorem D5, ltlll[:z . e} 2 2remi 270, EII} = le-Comblnlng gives

2t b (2ed = (rem(27*)y +). or

2o+l n(d— rem{(2"7 L.

Therefore, (6) istrue for p = pg + 1, and hence for all larger values.

Thus, one could solve (6) by a binary search, although a simple linear search (starting with p = W) is probably
preferable, because usually d is small, and small values of d give small values of p.

Proof That the Algorithm Is Feasible

We must show that (6) always has a solution and that O Sm<2W. (It is not necessary to show that p EW,
because that isforced.)

We show that (6) always has a solution by getting an upper bound on p. As a matter of general interest, we also
derive alower bound under the assumption that p is not forced to be at least W. To get these bounds on p,
observe that for any positive integer X, thereis apower of 2 greater than x and less than or equal to 2x. Hence
from (6),

nld=rem(2°, d)) <27 < 2n (d = rem(27, d)).

Because 0 ':—:rem(zp, d) <d- 1,
Equation 7

n.+ 1220 <2nd.

From (3a) and (3b), n. :_:""max(ZW- 1-d,d-1). Thelinesfy(d)=2W-1-dandfy(d)=d- 1crossatd=(2W-1

+ 1)/2. Hence n, :3(2W- 1-1)/2. Because n; is an integer, n. =oW-2 Because ne, d Sow-1.7, (7) becomes

IW-2 4]2 S22V 1),
or
Equation 8

W-l=p=2W-2

The lower bound p = W - 1 can occur (e.g., for W= 32, d = 3), but in that case we set p = W.

If pisnot forced to equal W, then from (4) and (7),

n.+ 1 2n.dn . + 1
<M —

f d n.

Using (3b) gives

d—1+1
———=m<2n + 1)

Because n Sow-1. 1(3a),

2Em=2W_o].

If pisforced to equal W, then from (4),

2W 2Wn .+ 1
2 eme =t
d d n

¢

Because 2 =d S2W-1- 1 and Ne ZoW-2,

2W 2WAW-2 4]
W1 _ 2 AW-2

IsmSs2W-141.

Hencein either case miswithin limits for the code schemaillustrated by the "divide by 7" example.
Proof That the Product Is Correct

We must show that if p and m are calculated from (6) and (5), then equations (1a) and (1b) are satisfied.
Equation (5) and inequality (6) are easily seen to imply (4). (In the case that p isforced to be equal to W, (6)

till holds, as shown by Theorem DCL1.) In what follows, we consider separately the following five ranges of
values of n:

http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq01#ch10eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq02#ch10eq02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq07#ch10eq07

O<n=n_,
n.+lsnsn +d-1,
-n.=n=-1,
-n —d+1s=ns-n_-1, and

n=-n.—d.
From (4), because mis an integer,

I 2P (n_+1)-1
z—{mi z)

dn,

Multiplying by n/2P, for n 20 this becomes

o l4 +
n(n.+1)—n
nomn_2nn +1)
d 27 28dn,

nlg|mn|gfn, (27 Dn
dl 2] |d 2%dn, |

. s0 that

For 0 =n Sn_, 0 (2 - 1)n/(2°dn,) < 1/d, so by Theorem D4,
j_:_l_{E‘"'—l}u _ ||
o EF{.I'lHr_ d

Hence (1a) is satisfied in this case (0 =n Sny).

For n> ng, nislimited to the range

Equation 9

n.+ | Eu"_{u:_+u’— 1,

because n :i'nc + d contradicts the choice of n. asthe largest value of n such that rem(n., d) =d- 1

(alternatively, from (3a), n :_:"nC +dimpliesn ZoW- 1). From (4), for n :_:"O,

mn _nh+
¥ < == "
20 d n,

L

By elementary algebra, this can be written

Equation 10

| -1, + 1
nmn_ n,.+ N (nn—n_)n,].
d 2 d dn

i

From (9), 1 <n- Ne <d- 1, so

0< (n—nn. +1) cd-1n.+ I
dn, Sodon,

i

Because n =d-1 (by (3b)) and (n. + 1)/n. has its maximum when n. has its minimum,

o)+ 1) d-1d-1+1_
dn,_ od d-1

.

In (10), the term (n. + 1)/d isan integer. Theterm (n - n)(n. + 1)/dn. islessthan or equal to 1. Therefore, (10)
becomes

i | mn En’i'f-"‘ |_
il ar i

For al nin the range (9), Lnzd] = (n.+ 1)/d. e (1a) is satisfied in this case (N, + 1 =n =n_+d - 1).

For n <0, from (4) we have, because mis an integer,

2 2wn+ |
¢ d n,

Multiplying by n/2P for n < O this becomes

ni,+ 1 o mn n2 41
d n. 20 d 2

or

nit + 1 n2"+ 1
- +1=| 0| -=—— [+ L
d n, ar d 2

Using Theorem D2 gives

n{n,) =dn +1 srelmr i< n@+) -2"d+ 1|,
dn, ar 2'd

nn A D+ mn | <[n@+1)+1]
dn, 24 2Pd

Becausen + 1 ':—:0, the right inequality can be weakened, giving

Equation 11
pattllelmn| iy <fn]
d dn, 2F d

For -n. ':—:n <. 1,

- +1
. {#F-i-l{

= =0, or
e, dn,.
___{H-i-lEﬂ
dn,

Hence by Theorem D4,

noon+ 1 "
=+ = | M
i | =Tl

so that (1b) is satisfied in this case (-n, =n S-1).

For n < -n., nislimited to the range

Equation 12

—Ht_—ff*‘-_ini—nt_— l.

(From (3a), n< - n. - d impliesthat n < -2W-1 which isimpossible.) Performing elementary algebraic

manipulation of the left comparand of (11) gives

Equation 13

=1 n)0 D+ L |y <[]
d dn, 27 d

For -n.-d ':—:n <. ne- 1,

[—:F+I}|[ni_+lj+ 1 {{u+ur}|{u:+1}+I{:—|[n*_+I)+l _

dn, dn.. dn,. dn,

i

The ratio (n. + 1)/n. is a maximum when n. isaminimum; that is, n. = d - 1. Therefore,

(Cd+1)d-1+1) 1 _(n+n)n+1)+]1
did-1) dn_ dn,

[< (m+n)n.+1)+1

=}, or

< ().

dn,.

From (13), because (- n. - 1)/d is an integer and the quantity added to it is between 0 and -1,

Fornintherange-nc-d+1':—:n s Ne- 1,

al_ —n.=1
il =

Hence Lmn/2" [+ 1 = [n/d]__inais, (1b) is satisied.

Thelast case, n = - n.. - d, can occur only for certain values of d. From (3a), - n. - d < ow- 1 soif ntakeson
thisvalue, we must haven=-n, - d =-2W-1 and hence n, = 2W- 1 - d. Therefore, rem(2W- 1, d)=rem(n + d,
d)=d- 1 (thatis, ddivides2W-1+1).

For thiscase (n = - n. - d), (6) has the solution p = W - 1(the smallest possible value of p), because for p=W- 1,

nd —rem(28, dyy = (2V- 1 —d)(d - rem(2¥ -1, o))

= (2W-T_d)d —(d-1))=2W-1_g«2W-1=2"

Then from (5),

2W-T ol —rem(2W -1 ¢ _ AWl d—(d-1) 2W-141

d o il

m =

Therefore,

LT PRI i o B el DR o Lt) P
2r o 2w d

I
[]
&
|
=,
—
.|_
_
||
- 1
|
(£
el =
—
I
_
W
—_—
.

so that (1b) is satisfied.

This completes the proof that if mand p are calculated from (5) and (6), then Equations (1a) and (1b) hold for
all admissible values of n.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq01#ch10eq01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq02#ch10eq02

10-5 Signed Division by Divisors =-2

Because signed integer division satisfiesn + (-d) = -(n + d) it is adequate to generate code for n + |d| and follow
it with an instruction to negate the quotient. (This does not give the correct result for d = -2W-1, but for this and
other negative powers of 2, you can use the code in Section 10-1, "Signed Division by a Known Power of 2,"
on page 155, followed by a negating instruction.) It will not do to negate the dividend, because of the
possibility that it is the maximum negative number.

It is possible, however, to avoid the negating instruction. The scheme isto compute

g = | M4 iftn=0, and
27

g =" 1%1 ifnz>0,
27

Adding 1if n> 0, however, is awkward (because one cannot simply use the sign bit of n), so the code will
instead add 1 if g < 0. Thisis equivaent because the multiplier mis negative (as will be seen).

The code to be generated isillustrated below for the case W= 32, d = -7.

| M Ox6DB6DB6D Magi ¢ num - (2**34+5)/7 + 2**32.
mul hs g, Mn g = floor(Mn/2**32).

sub d,qg,n g = floor(MnNn/2**32) - n.
shrsi q,q, 2 g = floor(q/4).

shri t,q, 31 Add 1 to g if

add g,q,t g is negative (n is positive).
muli t,q,-7 Conput e remai nder from

sub r,n,t r=n- q*(-7).

This code is the same as that for division by +7, except that it uses the negative of the multiplier for +7, and a
sub rather than an add after the multiply, and theshr i of 31 must use g rather than n, as discussed above.

(The case of d = +7 could also use q here, but there would be less parallelism in the code.) The subtract will not
overflow because the operands have the same sign. This scheme, however, does not always work! Although the
code above for W= 32, d = -7 is correct, the analogous alteration of the "divide by 3" code to produce code to

divide by -3 does not give the correct result for W= 32, n=-231,

Let uslook at the situation more closely.

http:// /?xmlid=0-201-91465-4/ch10lev1sec1#ch10lev1sec1
http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec1

Given aword size W =3 and adivisor d, -2W-1 Sd S-2, we wish to find the least (in absolute value) integer
m and integer p such that

Equation 14a

mnl = |n for -2"-1=n<0, and
2r il

Equation 14b

HA L] =2 forl €n<2W-1,
2F if

with -2%W Sm <0 and p <w.

Proceeding similarly to the case of division by a positive divisor, let n. be the most negative value of n such
that n. = kd + 1 for some integer k. n. exists because one possibility isn. = d + 1. It can be calculated from

_ AW — AW g a1
n. = (-2 ~Wdld+1 ==-2 +rem(2 + 1, “r}'ncisoneof the least [d| admissible

valuesof n, so
Equation 15a

=2W-lgp <-2W-1-d -]
‘.— - k

and clearly
Equation 15b

n(_irf+ l.

Because (14b) must hold for n = -d, and (14a) must hold for n = n., we obtain, analogous to (4),

Equation 16

wn_ -1 ar
e e < =,
d n_ d

Because misto be the greatest integer satisfying (16), it is the next integer less than 2°P/d—that is,

Equation 17

20— — rem(27, d)
o)

=

Combining this with the left half of (16) and ssimplifying gives

Equation 18

20 = (d + rem(27, d)).

The proof that the algorithm suggested by (17) and (18) is feasible and that the product is correct is similar to
that for a positive divisor, and will not be repeated. A difficulty arises, however, in trying to prove that -2W <m

<0.To prove this, consider separately the cases in which d is the negative of a power of 2, or some other
number. For d = -2Kitiseasy toshow that n.=-2W-1+1 p=W+k-1,andm=-2W-1-1 (whichiswithin

range). For d not of the form -2, it is straightforward to alter the earlier proof.

For Which Divisors Is m(-d) #&-m(d)?

By m(d) we mean the multiplier corresponding to adivisor d. If m(-d) = -m(d), code for division by a negative
divisor can be generated by calculating the multiplier for |d|, negating it, and then generating code similar to
that of the "divide by 7" caseillustrated above.

By comparing (18) with (6) and (17) with (5), it can be seen that if the value of n. for -d is the negative of that

for d, then m(-d) = -m(d). Hence m(-d) im(d) can occur only when the value of n; calculated for the negative

divisor is the maximum negative number, -2W -1, Such divisors are the negatives of the factors of 2W-1+ 1,
These numbers are fairly rare, asillustrated by the factorings below (obtained from Scratchpad).

2541 = 3-11-331
23141 = 3-715,827,883
20941 = 3. 19435419 - 77,158,673,929

For all these factors, m(-d) im(d). Proof sketch: For d > 0wehaven,=2W-1-d. Becauserem(2W-1,d) =d-
1, (6) issatisfied by p=W - 1 and hence also by p = W. For d < 0, however, we have n, = -2W- 1 and rem(2W -
1,d) =|d| - 1. Hence (18) is not satisfied for p=W- 1 or for p=W, sop > W.

http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3

10-6 Incorporation into a Compiler

For a compiler to change division by a constant into a multiplication, it must compute the magic number M and
the shift amount s, given adivisor d. The straightforward computation is to evaluate (6) or (18) for p=W, W+
1, ... until it issatisfied. Then, mis calculated from (5) or (17). M issimply areinterpretation of mas asigned
integer,ands=p- W.

The scheme described below handles positive and negative d with only alittle extra code, and it avoids
doubleword arithmetic.

Recall that n. is given by

% 2V Terem(2V -1 d)= 1, ifd>0,
n. =
L

—2Wel g rem(2W-T4 1, d), ifd <.

Hence |n.| can be computed from

_awoi, J0 ifd>0,
I, 1ifd<0,

|nr_| = [~ 1 —remf(s, |d]).

The remainder must be evaluated using unsigned division, because of the magnitude of the arguments. We have
written rem(t, |d|) rather than the equivalent rem(t, d), to emphasize that the program must deal with two
positive (and unsigned) arguments.

From (6) and (18), p can be calculated from

Equation 19

20 |H‘ |{If|r| —rem(2”, |d])),

and then |m| can be calculated from (c.f. (5) and (17)):

Equation 20

27 & || — rem(27, |d])

|l

|m| =

Direct evaluation of rem(2P,|d|) in (19) requires "long division" (dividing a 2W-bit dividend by a W-bit divisor,
giving aW-bit quotient and remainder), and in fact it must be unsigned long division. Thereisaway to solve
(19), and in fact to do all the calculations, that avoids long division and can easily be implemented in a
conventional HLL using only W-bit arithmetic. We do, however, need unsigned division and unsigned
comparisons.

We can calculate rem(2P, [d|) incrementally, by initializing two variables g and r to the quotient and remainder
of 2P divided by |d| with p=2W-1 and then updating g and r as p increases.

Asthe search progresses—that is, when p isincremented by 1-—q and r are updated from (see Theorem D5(a))

q = 2*q;

r = 2%r;

I f (r >= abs(d)) {
q=q + 1

r =r - abs(d);}

The left half of inequality (4) and the right half of (16), together with the bounds proved for m, imply that

_ | A W
g =L2"/ld]<2 50 q is representable as aW-bit unsigned integer. Also, 0 Sr < [d| so T is representable

as aW-bit signed or unsigned integer. (Caution: The intermediate result 2r can exceed 2W-1- 1, sor should be
unsigned and the comparison above should also be unsigned.)

Next, calculate o = |d| - r. Both terms of the subtraction are representable as W-bit unsigned integers, and the

resultisalso (1 =5 S|d]), so there is no difficulty here.

To avoid the long multiplication of (19), rewriteit as

Ll
The quantity 2 IF'”*'lisrepres;entableasaW—bit unsigned integer (similarly to (7), from (19) it can be shown
¥ .
that © = 2] IEJIIand, ford=-2W-1 n.=-2W-1+1andp=2W- 2 so that

" — JIW=2 W1 W
2 ’H[”c'| =2 /(2 -1) <2 forW:_:"?,).AIso, itiseasily calculated incrementally (as p increases) in

the same manner as for rem(2P, |d[). The comparison should be unsigned, for the case 2/ |n] 22! (which
can occur, for large d).

To compute m, we need not evaluate (20) directly (which would require long division). Observe that

2V + |d| — rem(2", |d]) _ \:”’

i I-?iJ+I=q+1.

2/ |n| =& 207 |n |

The loop closure test is awkward to evaluate. The quantity

. AP
ryp. 2 .-"|ul.|

isavailable only in the form of a
may or may not be an integer (it isaninteger only ford=2W-2+ 1 and
2/ |n | =8

quotient g, and a remainder

afew negative values of d). The test may be coded as

q,<81(q=8&r =0).

The complete procedure for computing Mand s from d is shown in Figure 10-1, coded in C, for W= 32. There
are afew places where overflow can occur, but the correct result is obtained if overflow isignored.

Figure 10-1 Computing the magic number for signed division.

struct ms {int M /'l Magi c nunber
int s;}; /1 and shift anount.

struct nms magic(int d) { /1 Must have 2 <= d <= 2**31-1
/] or -2**31 <=d <= -2.

i nt p;
unsi gned ad, anc, delta, ql, rl1l, g2, r2, t;
const unsigned two31 = 0x80000000; [l 2**31.

struct nms nag;

ad = abs(d);

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list01#ch10list01

t = two31 + ((unsigned)d >> 31);

anc =t - 1 - t%d; /'l Absol ute value of nc.
p = 31; [l Init. p.
gl = two31l/ anc; [l Init. gl = 2**p/| nc]|.
rl = two31l - qgl*anc; /[l Init. rl =rem2**p, |nc|).
g2 = two31/ ad; [l Init. g2 = 2**p/|d].
r2 = two3l - g2*ad, [l Init. r2 =rem2**p, |d]).
do {
p=p+ 1
ql = 2*ql; /'l Update gl = 2**p/|nc|.
rli = 2*rl; /'l Update rl = rem(2**p, |nc|.
If (rl >= anc) { /1 (Must be an unsi gned
gl = g1 + 1; /'l conparison here).
rl =rl1 - anc;}
g2 = 2*q2; /1 Update g2 = 2**p/|d|.
r2 = 2*r2; /'l Update r2 = renm(2**p, |d|.
1f (r2 >= ad) { /'l (Must be an unsi gned
g2 = g2 + 1, /'l conparison here).

rz =r2 - ad;}
delta = ad - r2;
} while (gl < delta || (gl == delta & rl1 == 0));

mag. M = q2 + 1,
if (d <0) mg.M=-mag.M // Magi c nunber and
mag.s = p - 32; /1 shift anmount to return.

return mag;

}

To use the results of this program, the compiler should generatethel i and mul hs instructions, generate the
add ifd >0and M< 0, or thesub if d <0and M> 0, and generatetheshr si if s >0. Then, theshri and
fina add must be generated.

For W = 32, handling a negative divisor may be avoided by simply returning a precomputed result for d = 3 and
d = 715,827,883, and using m(-d) = -m(d) for other negative divisors. However, that program would not be
significantly shorter, if at all, than the one given in Figure 10-1.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list01#ch10list01

10-7 Miscellaneous Topics

Theorem DC2. The least multiplier misodd if p is not forced to equal W.

Proof. Assume that Equations (1a) and (1b) are satisfied with least (not forced) integer p, and meven. Then
clearly m could be divided by 2 and p could be decreased by 1, and (1a) and (1b) would still be satisfied. This
contradicts the assumption that p is minimal.

Uniqueness

The magic number for a given divisor is sometimes unique (e.g., for W= 32, d = 7), but often it is not. In fact,
experimentation indicates that it is usually not unique. For example, for W= 32, d = 6, there are four magic
numbers:

M= 715827833 ((2%2+2)/6). s =0
M = 1,431,655766 ((2% +2)/3), § =1
M = =1,431.655.765 ((2¥+ 1)/ 3=2%), 5 =2

2,

M = 1431655764 ((2¥+4)/3-2%) 5 =

However, there is the following uniqueness property:

Theorem DC3. For a given divisor d, thereisonly one multiplier m having the minimal value of p, if p isnot
forced to equal W.

Proof. First consider the case d > 0. The difference between the upper and lower limits of inequality (4) is 2P/
dn.. We have already proved (7) that if p isminimal, then 2P/dn, <2 Therefore, there can be at most two
values of m satisfying (4). Let m be the smaller of these values, given by (5); then m + 1 isthe other.

Let pg be the least value of p for which m + 1 satisfies the right half of (4) (pg is not forced to equal W). Then

Mo — remi P Papp .+ |
20 o = remi2 ,,n'fj+ | _::2_ :
t d n,

Thissimplifiesto

http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq01
http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq02

270 = (2d = rem(2™, d)).

Dividing by 2 gives

2 s n:.(u’ — %n:m{i'”". .:!}J.

o ™ = b I
Because em(2™, d) < 2rem(2"% ", d) (by Theorem D5 on page 140),

200~V s (d - rem(27 ', d)),

contradicting the assumption that pg is minimal.

The proof for d < 0issimilar and will not be given.
The Divisors with the Best Programs

The program for d = 3, W= 32 is particularly short, because thereisno add or shr si after thenul hs.
What other divisors have this short program?

We consider only positive divisors. We wish to find integers mand p that satisfy equations (1a) and (1b), and
for whichp=Wand 0 SmS2oW-1 Because any integers m and p that satisfy equations (1a) and (1b) must

also satisfy (4), it suffices to find those divisors d for which (4) has a solution with p =W and 0 Sm<2W-1,
All solutions of (4) with p =W are given by

YW L] W
n = = +kd ;&m{., *d}, k=123, ...
{

Combining this with the right half of (4) and simplifying gives

http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq01
http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq02
http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq01
http:// /?xmlid=0-201-91465-4/ch10lev1sec4#ch10eq02

Equation 21

; W
rem(2W,) = kd - =—.
n.

The weakest restriction on rem(2W, d) iswith k=1 and n., at its minimal value of 2W - 2, Hence we must have

rem(2%, = d -4

that is, d divides2W + 1, 2W + 2 or 2W + 3.
Now let us see which of these factors actually have optimal programs.
If d divides 2W + 1, then rem(2W, d) = d - 1. Then asolution of (6) isp = W, because the inequality becomes

2Wen(d—(d-1)) = n_

which is obviously true, because n. < 2W- 1, Then in the calculation of mwe have

I Wad—(d-1) _ 2“’_+]_

d el

which is less than 2W- 1 for d =3 d 72 because d divides 2W + 1). Hence all the factors of 2W + 1 have
optimal programs.

Similarly, if d divides 2W + 2, then rem(2W, d) = d - 2. Again, a solution of (6) isp = W, because the inequality
becomes

2W=nld-(d=-2)) = 2n_,

which is obviously true. Then in the calculation of mwe have

which exceeds 2W -1 - 1 for d = 2, but which isless than or equal to 2W-1- 1 for W=3 d=3 (the case W= 3
and d = 3 does not occur, because 3 is not afactor of 23 + 2 = 10). Hence all factors of 2W + 2, except for 2 and

the cofactor of 2, have optimal programs. (The cofactor of 2 is (2W + 2)/2, which is not representable as a W-bit
signed integer).

If d divides 2W + 3, the following argument shows that d does not have an optimal program. Because rem(2W,
d) =d - 3, inequality (21) implies that we must have

oW

o= kd —d +3

for somek=1,2, 3, The weakest restriction iswith k = 1, so we must have n; < 2W/3.

From (3a), N, ZoW-1_¢ ord =2W-1- ne. Henceit is necessary that

AW TW

J=aWel _ = .
i 3 6

Also, since 2, 3, and 4 do not divide 2W + 3, the smallest possible factor of 2W + 3is 5. Hence the largest
possible factor is (2W + 3)/5. Thus, if d divides 2W + 3 and d has an optimal program, it is necessary that

W W
1—.-:1{!‘5'2 +3.
6 5

Taking reciprocals of this with respect to 2W + 3 shows that the cofactor of d, (2W + 3)/d, has the limits

L3 (2W 3.6 18
5£ {‘l' - 2“‘ = ﬁ+ﬁ'-

For W :_:"5, thisimplies that the only possible cofactorsare 5 and 6. For W< 5, it is easily verified that there are
no factors of 2W + 3. Because 6 cannot be afactor of 2W + 3, the only possibility is 5. Therefore, the only
possible factor of 2W + 3 that might have an optimal program is (2W + 3)/5.

For d = (2W + 3)/5,

B ":'H.'—l ('211-"_'_3 I
e = LE“+3);’5J 5]" '

For W=4,

W |

a

2 L ————
(2V % 3)/5

2W 43
n, = 1[— 'J—L
J

This exceeds (2W/3), so d = (2W + 3)/5 does not have an optimal program. Because for W < 4 there are no
factors of 2W + 3, we conclude that no factors of 2W + 3 have optimal programs.

In summary, all the factors of 2W + 1 and of 2W + 2, except for 2 and (2W + 2)/2, have optimal programs, and
no other numbers do. Furthermore, the above proof shows that algorithm magic (Figure 10-1 on page 174)

always produces the optimal program when it exists.

http:// /?xmlid=0-201-91465-4/ch10lev1sec6#ch10list01

L et us consider the specific cases W = 16, 32, and 64. The relevant factorizations are shown below.

21041

21642

O3537 (prime) 23241 = 641 - 6,700,417
2-3%-11-331 23242 =2.3-715827,883
208 41 = 274,177 - 67,280.421,310,721

242 = 2.3%.19.43. 5419 - 77,158,673.,929

Hence we have the results that for W = 16, there are 20 divisors that have optimal programs. The ones less than
100 are 3, 6, 9, 11, 18, 22, 33, 66, and 99.

For W = 32, there are six such divisors: 3, 6, 641, 6,700,417, 715,827,883, and 1,431,655,766.

For W = 32, there are 126 such divisors. The ones lessthan 100 are 3, 6, 9, 18, 19, 27, 38, 43, 54, 57, and 86.

10-8 Unsigned Division

Unsigned division by a power of 2 is of course implemented by a single shift right logical instruction, and
remainder by and immediate.

It might seem that handling other divisors will be simple: Just use the results for signed division with d > 0,
omitting the two instructions that add 1 if the quotient is negative. We will see, however, that some of the
details are actually more complicated in the case of unsigned division.

Unsigned Divide by 3
For a non-power of 2, let usfirst consider unsigned division by 3 on a 32-bit machine. Because the dividend n
can now be as large as 232 - 1, the multiplier (232 + 2)/3 isinadequate, because the error term 2n/3 - 232 (see

"divide by 3" example above) can exceed 1/3. However, the multiplier (233 + 1)/3 is adequate. The codeis

| M OxXAAAAAAAB Load nmagi ¢ nunber, (2**33+1)/3.

mul hu q, M n qg = floor(Mn/2**32).
shri q,q,1

muli t,q,3 Conput e remai nder from
sub r,n,t r = n - q*3.

An instruction that gives the high-order 32 bits of a 64-bit unsigned product is required, which we show above
asiul hu.

To see that the code is correct, observe that it computes

I S T I T n
q__ 3 FJ___%H-EHJ'

For 0 Sn <282, 0 Sn/(3 - 233) < 1/3, s0 by Theorem D4, 9 = Ln/3].

In computing the remainder, the multiply immediate can overflow if we regard the operands as signed integers,
but it does not overflow if we regard them and the result as unsigned. Also, the subtract cannot overflow,
because the result isin the range 0 to 2, so the remainder is correct.

Unsigned Divide by 7

http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec1

For unsigned division by 7 on a 32-bit machine, the multipliers (232 + 3)/7, (233 + 6)/7, and (234 + 5)/7 are all
inadequate because they give too large an error term. The multiplier (235 + 3)/7 is acceptable, but it's too large
to represent in a 32-bit unsigned word. We can multiply by this large number by multiplying by (235 + 3)/7 -
232 and then correcting the product by inserting an add. The codeis

i M 0x24924925 Magic num (2**35+3)/7 - 2%*32.

mul hu q, M n q = floor(Mn/2**32).

add g, q,n Can overflow (sets carry).
shrxi q,q,3 Shift right with carry bit.
muli t,q,7 Conput e remai nder from

sub r,n,t r = n- q*7.

Here we have a problem: The add can overflow. To allow for this, we have invented the new instruction shift
right extended immediate (Shr xi), which treats the carry from the add and the 32 bits of register qasa

single 33-bit quantity, and shiftsit right with O-fill. On the Motorola 68000 family, this can be done with two
instructions: rotate with extend right one position, followed by alogical right shift of three (r oxr actually uses

the X bit, but the add setsthe X bit the same as the carry bit). On most machines, it will take more. For

example, on PowerPC it takes three instructions: clear rightmost three bits of g, add carry to g, and rotate right
three positions.

With shr xi implemented somehow, the code above computes

_ 294+ 3)0 sl _|n, 3n
q = [\-(> -2]F:JH:JIE _L§+?-235J'

For 0 Sn< 2%, 0= 3n/(7 - 2%) < /7, so by Theorem D4, 4 = Ln/7 .

Granlund and Montgomery [GM] have a clever scheme for avoiding the shr Xi instruction. It requires the
same number of instructions as the above three-instruction sequence for shr xi , but it employs only

elementary instructions that almost any machine would have, and it does not cause overflow at all. It usesthe
identity

_ﬂ'fJ _ U_H—;‘i‘fjﬂx]fz“ g

http:// /?xmlid=0-201-91465-4/biblio#bib21

_ 3z
Applying thisto our problem, with 4 = LMn/2 thereo <M < 232, the subtraction will not overflow
because

FIHJ _ MHJ { [M JJ
n—¢g = h- = |n- =|nll- .
i 232 932

so that clearly 0 <n- q < 232, Also, the addition will not overflow, because

I-”—_qJ-i-q = I-”—_q+qJ = \-MJ,
2 2 2

and 0 Sn, q<23
Using thisidea gives the following code for unsigned division by 7:

i M 0x24924925 Magic num (2**35+3)/7 - 2%*32.

mul hu g, M n q = floor(Mn/2**32).

sub t,n,q t =n-q.

shri t,t,1 t =(n - q)/2.

add t,t,q t =(n- qg)/2 +q9g=(n+q)/2.
shri q,t,?2 g = (ntWMh/2*¥*32)/8 = floor(n/7).
muli t,q,7 Conmput e remai nder from

sub r,n,t r=n- q*7.

For this to work, the shift amount for the hypothetical shr xi instruction must be greater than 0. It can be

shown that if d > 1 and the multiplier m =032 (so that the shr xi instruction is needed), then the shift amount
is greater than 0.

10-9 Unsigned Division by Divisors 21

Given aword size W =1 and a divisor d, 1 <d< 2W, we wish to find the least integer m and integer p such that

Equation 22

TNl =|Z] for 0<n<2W,
2P o

with 0 Sm< 2W+1andp:‘_"W.

In the unsigned case, the magic number M is given by

. if 0<m<2W,
L i m

m—2W o 2W sy 2 2WHT

Because (22) must hold for " = 4. Lmds2" | = 1, or
Equation 23

md 5 1.

2F

Asinthe signed case, let n; be the largest value of n such that rem(n., d) = d - 1. It can be calculated from
ne = [2W/d]d -1 = 2¥ - rem2W, d) ~ l.qp o,

Equation 24a

2W—dsn =2V~ 1,

and
Equation 24b

nL_Ed—l.

These imply that n, = 2W- 1,

Because (22) must hold for n = n,,
mn,| _|n.| _ n.—{d=1)
w | Ld] el '

or

mn. n. + 1

<
20 d

Combining this with (23) gives
Equation 25

2 W+ 1
= Sma =L
d d n

o

Because misto be the least integer satisfying (25), it is the next integer greater than or equal to 2P/d—that is,

Equation 26

_ Waod=1=rem(2'=1,dH

el

I

Combining this with the right half of (25) and simplifying gives

Equation 27

P =n (d=1-rem(2 -1, d)).

The Algorithm (Unsigned)

Thus, the algorithm isto find by trial and error the least p =W satisfying (27). Then mis calculated from (26).

Thisisthe smallest possible value of m satisfying (22) with p ZW. Asin the signed casg, if (27) istruefor
some value of p, thenitistruefor all larger values of p. The proof is essentially the same as that of Theorem
DC1, except Theorem D5(b) is used instead of Theorem D5(a).

Proof That the Algorithm Is Feasible (Unsigned)

We must show that (27) always has a solution and that O Sm<oW+1,

Because for any nonnegative integer x thereis a power of 2 greater than x and less than or equal to 2x + 1, from
(27),

nd=1=rem(2' =1, e))<2"=2n (= 1 —rem{2" =1,) + 1.

Because 0 ':—:rem(Zp -1.d) <d- 1,
Equation 28

1227<2n(d-1)+ 1.

Because n, d < 2W- 1, this becomes

| =27 <202V - 1)(2W-2)+ 1,

or
Equation 29

=p=2W.

Thus, (27) always has a solution.
If pisnot forced to equal W, then from (25) and (28),

nid=1)y+1n_+1
- Sm< .
el ef ",

2d-2+1/n,

l=m< (n.+1),
el

lSm<2(n.+1)s2W+1

If pisforced to equal W, then from (25),

W wn. + |
2 < 27")
i il i,

Because 1 Sd S2W- 1 and Ne = oW - 1

W IWAW-1 4
L FW -1

M —
2 1
2em=2VW4+1.

Hence in either case miswithin limits for the code schemaiillustrated by the "unsigned divide by 7" example.

Proof That the Product Is Correct (Unsigned)

We must show that if p and m are calculated from (27) and (26), then (22) is satisfied.

Equation (26) and inequality (27) are easily seento imply (25). Inequality (25) is nearly the same as (4), and the

remainder of the proof is nearly identical to that for signed division with n =0,

http:// /?xmlid=0-201-91465-4/ch10lev1sec8#ch10lev2sec11
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec9&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10eq31#ch10eq31

10-10 Incorporation into a Compiler (Unsigned)

Thereisadifficulty in implementing an algorithm based on direct evaluation of the expressions used in this

proof. Although p E2W, which is proved above, the case p = 2W can occur (e.g., for d = 2W- 2 with W :34).
When p = 2W, it is difficult to calculate m, because the dividend in (26) does not fit in a 2W-bit word.

However, it can be implemented by the "incremental division and remainder" technique of algorithm magic.
The algorithm is given in Figure 10-2 for W = 32. It passes back an indicator a, which tells whether or not to

generate an add instruction. (In the case of signed division, the caller recognizes this by Mand d having
opposite signs.)

Figure 10-2 Computing the magic number for unsigned division.

struct nmu {unsigned M [/ Magi ¢ nunber,
I nt a; /1 "add" indicator,
Int s;}; /1l and shift anount.

struct nmu magi cu(unsigned d) {
/1 Must have 1 <= d <= 2**32-1.
I nt p;
unsi gned nc, delta, ql1, rl, q2, r2;
struct nu magu;

magu. a = O; /1 Initialize "add" indicator.
nc = -1 - (-d)%; /'l Unsigned arithnetic here.

p = 31; [l Init. p.

gl = 0x80000000/ nc; /[l Init. gl = 2**p/nc.

rl = 0x80000000 - gl*nc;// Init. rl = rem 2**p, nc).

g2 = Ox7FFFFFFF/ d; /[l Init. g2 = (2**p - 1)/d.
r2 = OX7FFFFFFF - g2*d; // Init. r2 = rem(2**p - 1, d).
do {
p=p+1
If (rl > nc - rl) {
gl = 2*gl + 1; /'l Update q1l.
ri =2*rl - nc;} /'l Update r1l.
el se {
gl = 2*q1l;
ri = 2*rl;}

I1f (r2 +1>d - r2) {
I f (g2 >= Ox7FFFFFFF) magu. a

I
=

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec10&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list02#ch10list02

g2 = 2*g2 + 1; /'l Update 2.
+ 1

r2 = 2*r2 - d;} /| Update r?2.
el se {

If (g2 >= 0x80000000) magu.a = 1,

g2 = 2*Qq2;

r2z =2*r2 + 1;}
delta =d - 1 - r2;
} while (p < 64 &&
(gl < delta || (g1l == delta & rl1 == 0)));

magu. M = q2 + 1; /1 Magi ¢ nunber
magu.s = p - 32; /1 and shift anount to return
return magu; /1l (magu.a was set above).

Some key points in understanding this algorithm are as follows:
* Unsigned overflow can occur at several places and should be ignored.

e n.=2W-rem(2W,d) - 1=(2W- 1) - rem(2W - d, d).

» Thequotient and remainder of dividing 2P by n. cannot be updated in the same way asisdonein

algorithm magic, because here the quantity 2* r 1 can overflow. Hence the algorithm hasthe test "i f
(rl>=nc-rl),"wheeas"i f (2*r 1 >=nc) " would be more natural. A similar remark
applies to computing the quotient and remainder of 2P - 1 divided by d.

. 0S55d- 1, so d is representable as a 32-bit unsigned integer.
mo=(2"4+d=1=rem2’ =1, d0/d = [(2" =1)1/d|+1 = .+ 1.

« Thesubtraction of 2W when the magic number Mexceeds 2W - 1 is not explicit in the program; it
occurs if the computation of 2 overflows.

« The"add" indicator, magu. a, cannot be set by a straightforward comparison of Mto 232, or of
g2 to 232 - 1, because of overflow. Instead, the program tests g2 before overflow can occur. If 2
ever gets as large as 232 - 1, so that Mwill be greater than or equal to 232, then na.gu. a isset equa to
1. If g2 staysbelow 232 - 1, then magu. a isleft at itsinitial value of 0.

* Inequality (27) is equivalent to 2P/n; > o.

e Theloop test needs the condition "p < 64" because without it, overflow of 1 would cause the
program to loop too many times, giving incorrect results.

10-11 Miscellaneous Topics (Unsigned)

Theorem DC2U. The least multiplier misodd if p is not forced to equal W.

Theorem DC3U. For a given divisor d, thereisonly one multiplier m having the minimal value of p, if p isnot
forced to equal W.

The proofs of these theorems follow very closely the corresponding proofs for signed division.
The Divisors with the Best Programs (Unsigned)

For unsigned division, to find the divisors (if any) with optimal programs of two instructions to obtain the
quotient (I i , mul hu), we can do an analysis similar to that of the signed case (see "The Divisors with the

Best Programs" on page 175). The result is that such divisors are the factors of 2Wor 2W + 1, except for d = 1.

For the common word sizes, this leaves very few nontrivial divisors that have optimal programs for unsigned
division. For W = 16, there are none. For W = 32, there are only two: 641 and 6,700,417. For W = 64, again
there are only two: 274,177 and 67,280,421,310,721.

Thecased =2k k=1, 2, ..., deserves special mention. In this case, algorithm magicu produces p = W (forced),
m = 232-k Thisisthe minimal value of m, but it is not the minimal value of M. Better code resultsif p=W+k
isused, if sufficient ssimplifications are done. Then, m=2W, M =0, a=1, and s - k. The generated code
involves amultiplication by 0 and can be simplified to a single shift right k instruction. As a practical matter,
divisorsthat are a power of 2 would probably be special-cased without using magicu. (This phenomenon does
not occur for signed division, because for signed division m cannot be a power of 2. Proof: For d > 0, inequality

(4) combined with (3b) impliesthat d - 1 < 2°P/m < d. Therefore, 2°/m cannot be an integer. For d < O, the result
follows similarly from (16) combined with (15b)).

For unsigned division, the code for the case m =2Wis cons derably worse than the code for the case m < 2W, if
the machine does not have shr Xxi . Henceit is of interest to have someidea of how often the large multipliers

arise. For W = 32, among the integers less than 100, there are 31 "bad" divisors: 1, 7, 14, 19, 21, 27, 28, 31, 35,
37, 38, 39, 42, 45, 53, 54, 55, 56, 57, 62, 63, 70, 73, 74, 76, 78, 84, 90, 91, 95, and 97.

Using Signed in Place of Unsigned Multiply, and the Reverse
If your machine does not have nmul hu, but it does have mul hs (or signed long multiplication), the trick given

in "High-Order Product Signed from/to Unsigned,” on page 132, might make our method of doing unsigned
division by a constant still useful.

That section gives a seven-instruction sequence for getting mul hu from nmul hs. However, for this
application it simplifies, because the magic number M is known. Thus, the compiler can test the most

http:// /?xmlid=0-201-91465-4/ch10lev1sec7#ch10lev2sec9
http:// /?xmlid=0-201-91465-4/ch10lev1sec7#ch10lev2sec9
http:// /?xmlid=0-201-91465-4/ch08lev1sec3#ch08lev1sec3

significant bit of the magic number, and generate code such as the following for the operation "nmul hu g, M
n." Heret denotes atemporary register.

My = 0 My =1
mul hs g, M n mul hs g, M n
shrsi t,n, 31 shrsi t,n, 31
and t,t, M and t,t, M
add g,q,t add t,t,n

add g,q,t

Accounting for the other instructions used with mul hu, this uses atotal of six to eight instructions to obtain
the quotient of unsigned division by a constant, on a machine that does not have unsigned multiply.

Thistrick may be inverted, to get mul hs intermsof nmul hu. The code is the same as that above except the
mul hs ischanged to mul hu and thefinal add in each columnis changed to sub.

A Simpler Algorithm (Unsigned)

Dropping the requirement that the magic number be minimal yields a simpler algorithm. In place of (27) we can
use

Equation 30

2= 2W(d -1 - rem(2” - 1. d)),

and then use (26) to compute m, as before.

It should be clear that this algorithm is formally correct (that is, that the value of m computed does satisfy
equation (22)), because its only difference from the previous algorithm is that it computes a value of p that, for

some values of d, isunnecessarily large. It can be proved that the value of m computed from (30) and (26) is
lessthan 2W + 1, We omit the proof and simply give the agorithm (Figure 10-3).

Figure 10-3 Simplified algorithm for computing the magic number, unsigned division.

struct nmu {unsigned M /'l Magi ¢ nunber,
I nt a; /1 "add" indicator,
int s;}; /1 and shift anount.

http:// /?xmlid=0-201-91465-4/ch10lev1sec9#ch10eq26
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec11&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list03#ch10list03

struct nmu magi cu2(unsi gned d) {
/[l Must have 1 <= d <= 2**32-1.
I nt p;
unsi gned p32, q, r, delta;
struct nu nagu;

magu. a = O; /1l Initialize "add" indicator.
p = 31, /[l Initialize p.
g = Ox7FFFFFFF/ d, Il Initialize q = (2**p - 1)/d.
r = OX7FFFFFFF - qg*d; [l Init. r =rem2**p - 1, d).
do {

p=p+1

If (p == 32) p32 = 1; Il Set p32 = 2**(p-32).

el se p32 = 2*p32;
If (r +1>d-r1) {
I f (q >= Ox7FFFFFFF) magu.a = 1,

q = 2*q + 1; /'l Update q.
rr=2*r + 1 - d; /1 Update r.
}
el se {
If (g >= 0x80000000) nagu.a = 1;
q = 2*q;
r=2*r + 1;
}
delta =d - 1 - r;
} while (p < 64 && p32 < delta);
rmmJM:c1+1; /'l Magi ¢ nunber and
magu.s = p - 32; /1l shift anmount to return
return nagu; /1 (magu.a was set above).

Alverson [Alv] gives amuch simpler algorithm, discussed in the next section, but it gives somewhat large
values for m. The point of algorithm magicu2 isthat it nearly always gives the minimal value for mwhend

Sow-1, For W = 32, the smallest divisor for which magicu2 does not give the minimal multiplierisd =
102,807, for which magicu calculates m = 2,737,896,999 and magicu?2 calculates m = 5,475,793,997.

There is an analog of magicu2 for signed division by positive divisors, but it does not work out very well for
signed division by arbitrary divisors.

http:// /?xmlid=0-201-91465-4/biblio#bib2

10-12 Applicability to Modulus and Floor Division

It might seem that turning modulus or floor division by a constant into multiplication would be simpler, in that
the"add 1 if the dividend is negative" step could be omitted. Thisis not the case. The methods given above do
not apply in any obvious way to modulus and floor division. Perhaps something could be worked out; it might
involve altering the multiplier m slightly depending upon the sign of the dividend.

10-13 Similar Methods

Rather than coding algorithm magic, we can provide atable that gives the magic numbers and shift amounts for
afew small divisors. Divisors equal to the tabulated ones multiplied by a power of 2 are easily handled as
follows:

1. Count the number of trailing O'sin d, and let this be denoted by k.

2. Use asthe lookup argument d/2X (shift right K).
3. Usethe magic number found in the table.
4. Usethe shift amount found in the table, increased by k.
Thus, if the table contains the divisors 3, 5, 25, and so on, divisors of 6, 10, 100, and so forth can be handled.

This procedure usually gives the smallest magic number, but not always. The smallest positive divisor for
which it failsin this respect for W= 32 isd = 334,972, for which it computesm = 3,361,176,179 and s = 18.
However, the minimal magic number for d = 334,972 is m = 840,294,045, with s= 16. The procedure also fails
to give the minimal magic number for d = -6. In both these cases, output code quality is affected.

Alverson [Alv] isthe first known to the author to state that the method described here works with complete
accuracy for all divisors. Using our notation, his method for unsigned integer division by d isto set the shift

amount P = W+ rl{}gld-l.

n+d = Lmn/2" | thatis multiply and shift right). He proves that the multiplier mis lessthan 2W+ 1. and
that the method gets the exact quotient for all n expressible in W bits.

and the multiplier # = [2"/d '], and then do the division by

Alverson's method isasimpler variation of oursin that it doesn't require trial and error to determine p, and is
thus more suitable for building in hardware, which is his primary interest. His multiplier m, however, is always
greater than or equal to 2W, and thus for the software application always gives the code illustrated by the
"divide by 7" example (that is, always hasthe add and shr xi , or the aternative four instructions). Because

most small divisors can be handled with amultiplier less than 2W it seems worthwhile to look for these cases.

For signed division, Alverson suggests finding the multiplier for |d| and aword length of W - 1 (then 2W-1 <m
< 2W), multiplying the dividend by it, and negating the result if the operands have opposite signs. (The
multiplier must be such that it gives the correct result when the dividend is 2W - 1, the absolute value of the

maximum negative number). It seems possible that this suggestion might give better code than what has been

given herein the case that the multiplier m =W, Applying it to signed division by 7 gives the following code,
where we have used therelation -x = X + 1 to avoid a branch:

http:// /?xmlid=0-201-91465-4/biblio#bib2
http:// /?xmlid=0-201-91465-4/ch10lev1sec3#ch10lev2sec3

abs an, n
| M 0x92492493 WMagi ¢ nunber, (2**34+5)/7.

mul hu g, M an g = floor(Man/2**32).
shri q,q,2

shrsi t,n, 31 These three instructions
xor g,q,t negate q if nis

sub g,q,t negati ve.

Thisis not quite as good as the code we gave for signed division by 7 (six vs. seven instructions), but it would
be useful on a machine that hasabs and nul hu but not nul hs.

10-14 Sample Magic Numbers

Table 10-1. Some Magic Numbers for W = 32

Signed Unsigned
M (hex) M (hex)
5 99999999 1
3 55555555 1
ok 7FFFFFFF k-1
1 - - 0
ok 80000001 k-1 932-K
3 55555556 0 AAAAAAAB
5 66666667 1 CCCCCCCD
6 2 AAAAAAB 0 AAAAAAAB
7 92492493 2 24924925
9 38E38E39 1 38E38E39
10 66666667 2 CCCCCCCD
11 2ES8BA2E9Q 1 BA2ESBA3
12 2 AAAAAAB 1 AAAAAAAB
25 51EB851F 3 51EB851F

125 10624DD3 10624003

625 68DB8BAD D1B71759
Table 10-2. Some Magic Numbers for W = 64
Signed Unsigned

d M (hex) s M (hex)

-5 9999999999999999 1

-3 ©555555555555555 1

ok [/FFFFFFFFFFFFFFF k-1

1 - - 0

ok 8000000000000001 k1l |oeak

3 ©555555555555556 0 AAAAAAAAAAAAAAAB

5 6666666666666667 1 CCCCCCCCCCCCCCCD

6 2AAAAAAAAAAAAAAB 0 AAAAAAAAAAAAAAAB

7 4924924924924925 1 2492492492492493

9 1C71C/1C/1C71Cr2 0 E38E38E38E38E38F

10 6666666666666667 2 CCCCCCCCCCCCCCCD

11 2ESBA2ESBA2ESBA3 1 2ESBA2ESBA2ESBA3

12 2AAAAAAAAAAAAAAB 1 AAAAAAAAAAAAAAAB

25 A3D/0A3D/0A3D/0B 4 47AE147AEL147AELS

125

20C4A9BASES3S53F/7CF

0624DD2F1A9FBE/ 7

625

346DC5D63886594B

346DC5D63886594B

10-15 Exact Division by Constants

By "exact division," we mean division in which it is known beforehand, somehow, that the remainder is 0.
Although this situation is not common, it does arise, for example, when subtracting two pointersin the C
language. In C, the result of p - g, where p and g are pointers, iswell defined and portable only if p and q point
to objectsin the same array [H& S, sec. 7.6.2). If the array element sizeis s, the object code for the difference p

- g computes (p - g)/s.

The material in this section was motivated by [GM, sec. 9].

The method to be given applies to both signed and unsigned exact division, and is based on the following
theorem.

Theorem MI. If aand marerelatively prime integers, then thereexistsan integer a , 1 <a < m, such that

aa=1 (mod m).

Thusa isamultiplicative inverse of a, modulo m. There are several ways to prove this theorem; three proofs
aregivenin [NZM, 52]. The proof below requires only avery basic familiarity with congruences.

Proof. We will prove something alittle more general than the theorem. If a and m are relatively prime (and
hence nonzero), then as x ranges over al mdistinct values modulo m, ax takes on all m distinct values modulo
m. For example, if a=3 and m= 8, thenasxrangesfromOto7,ax=0, 3, 6, 9, 12, 15, 18, 21 or, reduced
modulo 8,ax=0, 3,6, 1, 4, 7, 2, 5. Observe that all valuesfrom 0 to 7 are present in the last sequence.

To seethisin general, assume that it is not true. Then there exist distinct integers that map to the same value
when multiplied by a; that is, there exist x and y, with x ﬁy (mod m), such that

ax=ay (mod m).

But then there exists an integer k such that

ax—ay = k., or

alx—v) = k.

http:// /?xmlid=0-201-91465-4/biblio#bib32
http:// /?xmlid=0-201-91465-4/biblio#bib21
http:// /?xmlid=0-201-91465-4/biblio#bib49

Because a has no factor in common with m, it must be that x - y isamultiple of m; that is,

x=y (modm).

This contradicts the hypothesis.

Now, because ax takes on all mdistinct values modulo m, as x ranges over the m values, it must take on the
value 1 for some x.

The proof shows that there is only one value (modulo m) of x such that ax =1 (mod m)—that is, the
multiplicative inverseis unique, apart from additive multiples of m. It also shows that there is a unique (modulo
m) integer x such that ax =b (mod m)where b is any integer.

As an example, consider the case m= 16. Then 3 = Il pecause 311 = 33 =1 (mod 16). We could just as

well take 3 = —5. because 3-(-5) = -15 =1 (mod 16). Similarly, =3 = 3. because (-3):5 = -15 =1 (mod 16).

These observations are important because they show that the concepts apply to both signed and unsigned
numbers. If we are working in the domain of unsigned integers on a 4-bit machine, wetake 3 = 11.Inthe

domain of signed integers, we take 3 = -5.But 11 and -5 have the same representation in two's-complement
(because they differ by 16), so the same computer word contents can serve in both domains as the
multiplicative inverse.

The theorem applies directly to the problem of division (signed and unsigned) by an odd integer d on a W-bit
computer. Because any odd integer is relatively prime to 2W, the theorem says that if d is odd, there exists an
integer d (uniqueintherange 0to 2W- 1 or intherange -2W-1to 2W-1- 1) such that

dd=1 (mod 2W).

Hence for any integer n that isamultiple of d,

B=(ddy=nd (mod 2%
d d

In other words, n/d can be calculated by multiplying n by d , and retaining only the rightmost W bits of the
product.

If the divisor diseven, let d = d, - 2K, where d, is odd and k =1, Then, simply shift n right k positions (shifting

out 0's), and then multiply by d, (the shift could be done after the multiplication as well).

Below isthe code for division of n by 7, where nisamultiple of 7. This code gives the correct result whether it
is considered to be signed or unsigned division.

| M OxB6DB6DB7 Mult. inverse, (5*2**32 + 1)/7.
nmul g, M n g =n/7.

Computing the Multiplicative Inverse by the Euclidean Algorithm

How can we compute the multiplicative inverse? The standard method is by means of the "extended Euclidean
algorithm.” Thisisbriefly discussed below as it applies to our problem, and the interested reader isreferred to
[NZM, 13] and to [Knu2, sec. 4.5.2] for a more complete discussion.

Given an odd divisor d, we wish to solve for x

dr=1 (mod m).

where, in our application, m= 2W and W is the word size of the machine. Thiswill be accomplished if we can
solve for integers x and y (positive, negative, or 0) the equation

dx+my = I.

Toward this end, first make d positive by adding a sufficient number of multiples of mtoit. (d and d + km have
the same multiplicative inverse.) Second, write the following equations (in which d, m > 0):

dl=1y+mi(l) = m-d (1)
di1y+ m(0) = d. (11)

http:// /?xmlid=0-201-91465-4/biblio#bib49
http:// /?xmlid=0-201-91465-4/biblio#bib39

If d= 1, we are done, because (ii) shows that x = 1. Otherwise, compute

_ =l
q L - J

Third, multiply Equation (ii) by q and subtract it from (i). This gives

di-1=gh+mi(l) = m—d-gd = remim - d, d).

This equation holds because we have simply multiplied one equation by a constant and subtracted it from
another. If rem(m- d, d) = 1, we are done; this last equation isthe solutionand x =- 1 - q.

Repeat this process on the last two equations, obtaining a fourth, and continue until the right-hand side of the
equation is 1. The multiplier of d, reduced modulo m, is then the desired inverse of d.

Incidentally, if m- d < d, so that the first quotient is 0, then the third row will be a copy of thefirst, so that the
second quotient will be nonzero. Furthermore, most texts start with the first row being

d(0)y+m(l) = m,

but in our application m = 2W s not representable in the machine.

The processis best illustrated by an example. Let m= 256 and d = 7. Then the calculation proceeds as follows.
To get the third row, note that 4 = [249/7 | = 35.

7(-1) + 256(1) = 249
7(1) + 256(0) = 7

7(-36) + 256(1) = 4
7(37) + 256(-1) = 3
7(-73) + 256(2) =1

Thus, the multiplicative inverse of 7, modulo 256, is-73 or, expressed in the range 0 to 255, is 183. Check:
7-183 = 1281 =1 (mod 256).

From the third row on, the integers in the right-hand column are all remainders with respect to the number

above it asadivisor (d being the dividend), so they form a sequence of strictly decreasing nonnegative integers.
Therefore, the sequence must end in O (as the above would if carried one more step). Furthermore, the value
just before the 0 must be 1, for the following reason. Suppose the sequence endsin b followed by 0, with b

1 Then, the integer preceding the b must be amultiple of b, let's say k4b, for the next remainder to be 0. The
integer preceding kb must be of the form k;k,b + b, for the next remainder to be b. Continuing up the

sequence, every number must be a multiple of b, including the first two (in the positions of the 249 and the 7 in
the above example). But thisisimpossible, because the first two integers are m - d and d, which are relatively
prime.

This constitutes an informal proof that the above process terminates, with avalue of 1 in the right-hand column,
and hence it finds the multiplicative inverse of d.

To carry this out on acomputer, first note that if d < 0 we should add 2W to it. But with two's-complement
arithmetic it is not necessary to actually do anything here; ssimply interpret d as an unsigned number regardless
of how the application interpretsit.

The computation of g must use unsigned division.

Observe that the calculations can be done modulo m, because this does not change the right-hand column (these
values are in the range 0 to m- 1 anyway). Thisis important, because it enables the calculations to be donein

"single precision," using the computer's modulo-2W unsigned arithmetic.

Most of the quantities in the table need not be represented. The column of multiples of 256 need not be
represented, because in solving dx + my = 1, we do not need the value of y. Thereisno need to represent d in
the first column. Reduced to its bare essentials, then, the calculation of the above exampleis carried out as
follows:

255 249
1 7
220 4
37 3
183 1

A C program for performing this computation is shown in Figure 10-4.

Figure 10-4 Multiplicative inverse modulo 232 by the Euclidean algorithm.

unsi gned nmul i nv(unsi gned d) { /1l d must be odd.
unsi gned x1, v1, x2, v2, x3, v3, (;

x1
X2

OXFFFFFFFF; vl
1; V2

_d,
d;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec15&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list04#ch10list04

while (v2 > 1) {

qg = vl/v2;

x3 = x1 - g*x2; v3 = vl - g*vZ;
x1 = x2; vl = v2;

X2 = X3; v2 = V3;

}

return(x2);

The reason the loop continuation conditionis (v2 > 1) rather than the more natural (v2 ! = 1) isthatif the

latter condition were used, the loop would never terminate if the program were invoked with an even argument.
It is best that programs not loop forever even if misused. (If the argument d iseven, V2 never takes on the

value 1, but it does become 0.)

What does the program compute if given an even argument? As written, it computes a number x such that dx
=0 (mod 232), which is probably not useful. However, with the minor modification of changing the loop
continuation conditionto (v2 ! = 0) and returning X 1 rather than X 2, it computes a number x such that dx

=g (mod 232) where g is the greatest common divisor of d and 232—that is, the greatest power of 2 that divides
d. The modified program still computes the multiplicative inverse of d for d odd, but it requires one more
iteration than the unmodified program.

Asfor the number of iterations (divisions) required by the above program, for d odd and less than 20, it requires
amaximum of 3 and an average of 1.7. For d in the neighborhood of 1000, it requires a maximum of 11 and an
average of about 6.

Computing the Multiplicative Inverse by Newton's Method

It iswell known that, over the real numbers, 1/d, for d 750, can be calculated to ever increasing accuracy by
iteratively evaluating

Equation 31

-"'.Irl+1 — _\.'”'[3 - E:LF.'I.',L

a7

provided theinitial estimate X, is sufficiently close to 1/d. The number of digits of accuracy approximately
doubles with each iteration.

It is not so well known that this same formula can be used to find the multiplicative inverse in the domain of
modular arithmetic on integers! For example, to find the multiplicative inverse of 3, modulo 256, start with xg =

1 (any odd number will do). Then,

X, = 1(2-3-1) = -1,

X, = =1(2=3(=1)) = -5,

Xy = =5(2-3(=-5)) = -85,

x, = —85(2-3(-85)) = —21845=-85 (mod 256).

The iteration has reached a fixed point modulo 256, so -85, or 171, is the multiplicative inverse of 3 (modulo
256). All calculations can be done modulo 256.

Why does this work? Because if x,, satisfies

dx, =1 (mod m)

and if x,, + 1 isdefined by (31), then

dx,, =1 (mod m?).

To seethis, let dx, =1+ km. Then

el x

nel T ff_{'"(E - E'I'T.'r]

= (1 +km)(2=(1+km))
= (1 +km)(l =4km)
= 1 —kZm?

= | (mod m?).

In our application, mis apower of 2, say 2N. In this case, if

dx, =1 (mod 2Y), then

dv,, ;=1 (mod 22¥),

Inasense, if x, isregarded as a sort of approximation to d , then each iteration of (31) doubles the number of
bits of "accuracy” of the approximation.

It happens that, modulo 8, the multiplicative inverse of any (odd) number disd itself. Thus, taking xo =disa
reasonable and simpleinitial guessat d . Then, (31) will give values of x4, Xy, ..., such that

dx; =1 (mod 2°),
di,=1 (mod 212),
dry=1 (mod 234,

de, =1 (mod 2%, and so on.

Thus, four iterations suffice to find the multiplicative inverse modulo 232 (if x =1 (mod 248) then x =1 (mod
2" for n ':—:48). This leads to the C program in Figure 10-5, in which all computations are done modulo 232.

Figure 10-5 Multiplicative inverse modulo 232 by Newton's method.

unsi gned mul i nv(unsi gned d) { /1 d nmust be odd.
unsi gned xn, t;

xn = d;
| oop: t = d*xn;
If (t == 1) return xn;
Xn = xn*(2 - t);
goto | oop;

For about half the values of d, this program takes 4 1/2 iterations, or nine multiplications. For the other half
(those for which theinitial value of xn is"correct to 4 bits"—that is, d2 =1 (mod 16)), it takes seven or fewer,
usually seven, multiplications. Thus, it takes about eight multiplications on average.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec15&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10list05#ch10list05

A variation isto simply execute the loop four times, regardless of d, perhaps "strung out” to eliminate the loop
control (eight multiplications). Another variation is to somehow make the initial estimate X "correct to 4

bits" (that is, find xg that satisfies dxg =1 (mod 16)). Then, only three loop iterations are required. Some ways
to set theinitial estimate are

xpe—d+2((d+1)&4), and

xpe—di+d-1.

Here, the multiplication by 2 is aleft shift, and the computations are done modulo 232 (ignoring overflow).
Because the second formula uses a multiplication, it saves only one.

This concern about execution time is of course totally unimportant for the compiler application. For that
application, the routine would be so seldom used that it should be coded for minimum space. But there may be
applicationsin which it is desirable to compute the multiplicative inverse quickly.

Sample Multiplicative Inverses
We conclude this section with alisting of some multiplicative inversesin Table 10-3.

Table 10-3. Sample Multiplicative Inverses

d d
(dec) mod 16 (dec) mod 232 (hex) mod 264 (hex)
-7 -7 49249249 9249249249249249
-5 3 33333333 3333333333333333
-3 5 55555555 5555555555555555
1 1 FFFFFFFF FEFFFFFFFFFFFFFE
1 1 1 1

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch10lev1sec15&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch10table03#ch10table03

3 11 AAAAAAAB AAAAAAAAAAAAAAAB
5 13 CCCCCCCD CCCCCCCCCCCCCCCD
7 7 BoDB6DB/ 6DB6DB6DB6DB6 DB/
9 9 38E38E39 SE38E38E38E38E39
11 3 BA2ESBA3 2ESBAZESBA2ESBAI
13 5 AEAEC AECAECAECAECAECS
15 15 EEEEEEEF EEEEEEEEEEEEEEEF
25 C28F5C29 BF5C28F5C28F5C29
125 26E9/7/8D5 1CACO83126E978D5
625 SAFB/E91 D288CE/O03AFB/E91

Y ou may noticethat in several cases (d =3, 5, 9, 11), the multiplicative inverse of d is the same as the magic
number for unsigned division by d (see Section 10-14, "Sample Magic Numbers,” on page 189). Thisis more or

less a coincidence. It happens that for these numbers, the magic number M is equal to the multiplier m, and
these are of theform (2P + 1)/d, with p :332. In this case, notice that

20 41
P

Md = (J:J"E 1 (mod 24°),

sothat M =d (mod 232).

http:// /?xmlid=0-201-91465-4/ch10lev1sec14#ch10lev1sec14

10-16 Test for Zero Remainder after Division by a Constant

The multiplicative inverse of adivisor d can be used to test for a zero remainder after division by d [GM].

Unsigned

First, consider unsigned division with the divisor d odd. Denote by d the multiplicative inverse of d. Then,
because dd” =1 (mod 2W), where W is the machine's word sizein bits, d isalso odd. Thus, d isrelatively
prime to 2W, and as shown in the proof of theorem M1 in the preceding section, as n ranges over all 2W distinct
values modulo 2W, nd ™ takes on all 2W distinct values modulo 2W.

It was shown in the preceding section that if nisamultiple of d,

’-:I =nd (mod 2W).
¢

That is, for
n=0,d,2d, ..., L2V = 1)/d]d, nd =0,1,2, ..., L(2¥ = 1)/d] (mod 2%). 1herefore. for n

not amultiple of d, the value of nd ", reduced modulo 2W to the range 0 to 2W - 1, must exceed L2v-1)/d].

This can be used to test for a zero remainder. For example, to test if an integer nisamultiple of 25, multiply n

by 25 and compare the rightmost W bits to L{EW — | }’IEEJ-On our basic RISC:

| i M OxC28F5C29 Load nult. i1 nverse of 25.

nmul g, M n g = right half of Mn.

| i c, OXOA3D70A3 ¢ = floor((2**32-1)/25).
cnpleu t,q,c Conpare g and c, and branch
bt t,is_nmult If nis amltiple of 25,

To extend thisto even divisors, let d = d, - 2K, where d,, is odd and k =1, Then, because an integer isdivisible

by d if and only if it is divisible by d, and by 2, and because n and "« have the same number of trailing zeros

(nr~is odd), the test that nisamultipleof dis

http:// /?xmlid=0-201-91465-4/biblio#bib21

Setg = mm’l[u?,,. 2%

g = I_{jw _ I]MHJ and ¢ ends in £ or more O-bits,

where the "mod" function is understood to reduce "“« to the interval [0, 2W - 1]

Direct implementation of this requires two tests and conditional branches, but it can be reduced to one compare-
branch quite efficiently if the machine has the rotate-shift instruction. This follows from the following theorem,

Feif
inwhich @ 2k denotesthe computer word a rotated right k positions (0 <k ':—:32).

THEOREM ZRU. x<a and x ends in k O-bits if and onlv if
x5k<lar2t].

Proof. (Assume a 32-bit machine.) Suppose +* <@ and x endsin k 0-bits. Then, because

xia, [x/2¢]%las2t | gy Lx/28] = x Sk Therefore, * Sk<las2* |ty goesnot endinko-
bits, then * %k does not begin with k 0-bits, whereas Las2%] does,so x 2k 2 I-”"fEAJ-LastIy, if

x> % and x ends in k 0-bits, then the integer formed from the first 32 - k bits of x must exceed that formed

from the first 32 - k bits of a, so that LI*’IE*'J = Las2k].

Using this theorem, the test that nisamultiple of d, wheren and d =1ae unsigned integersand d = d, - 2
with d, odd, is

q — mod(rd , 2W);

gkE[(2V-1)/d].

Hereweused LY =174, J/24] = [@¥-1)/(d, - 24 | = LY - 1)/d).

As an example, the following code tests an unsigned integer n to seeif it isamultiple of 100:

| i M OxC28F5C29 Load nult. i1nverse of 25.

nmul g, Mn g = right half of Mn.
shrri q,q,?2 Rotate right two positions.
| i c, X' 028F5C28' ¢ = floor((2**32-1)/100).
cnpleu t,qg,c Conpare g and c, and branch
bt t,is_nmult If nis amltiple of 100.

Signed, Divisor 22

For signed division, it was shown in the preceding section that if nisamultiple of d, and d is odd, then

%= nd tmod 2Wy,
el

Thus for @ = [=2"-17d] d.....~d 0, d. ... L(2Y-"=1)/d] d.\ehave

nd = |'—2“’]x"'f.lr-l....,—] A1, ...,L{EW I — |}x"'|'.|rJ {mod Ew:}-Furthermore, becaused_isrelatively
primeto 2W, as n ranges over all 2W distinct values modulo 2W, nd™ takes on all 2W distinct values modulo 2W.,
Therefore, nisamultiple of d if and only if

[=2W-1/47 < modind, 2Wy < | (2W-1 = 1)/d],

where the "mod" function is understood to reduce nd™ to theinterval [-2W-1, 2W-1.1],

This can be simplified alittle by observing that because d is odd and, as we are assuming, positive and not
equal to 1, it does not divide 2W - 1. Therefore,

[=2W-17d] = [(=2W-1+ 1)/d] = =L(2W-1=1)/d].

Thus, for signed numbers, the test that nisamultiple of d, whered = d, - 2k and d, isodd, is

Set g = mod(nd , 2");

L @2¥-1-0/d, | <g<| (2% = 1)/d, | and g ends in k or more 0-bits.

On the surface, this would seem to require three tests and branches. However, as in the unsigned casg, it can be
reduced to one compare-branch by use of the following theorem.

Theorem ZRS. If a :30, the following assertions are equivalent:
1. @ 4 =x =a and x ends in & or more 0-bits,
2. (2 abs(x) s k=] a/2%], and
3. (3 X+a' Bk [2a7/2¢],

where a' isa with its rightmost k bits set to O (that is, a' = a & -2K).

Proof. (Assume a 32-bit machine). To seethat (1) is equivalent to (2), clearly the assertion -a <x Sais
equivalent to abs(x) <a Then, Theorem ZRU applies, because both sides of thisinequality are nonnegative.

To seethat (1) isequivaent to (3), note that assertion (1) is equivalent to itself with a replaced with a'. Then,
by the theorem on bounds checking on page 52, thisin turn is equivalent to

x+a <2a’.

Because x + @' endsin k O-bitsif and only if x does, Theorem ZRU applies, giving the result.

Using part (3) of thistheorem, the test that nisamultiple of d, wheren and d =2 are signed integersand d =
do - 2Xwith d, odd, is

q — nmdn[m?r,_. 2wy
a | (2W-1-1)/d, | & -2%

g+a Sksl(2a’)/24].

(a' may be computed at compile time, because d is a constant.)

As an example, the following code tests a signed integer n to seeif it isamultiple of 100. Notice that the

constant I-?“”" iUcan always be derived from the constant @' by a shift of k - 1 bits, saving an instruction or

aload from memory to develop the comparand.

| i M OxC28F5C29 Load nult. i1nverse of 25.

mul g, M n g = right half of Mn.

| c, Ox051EB850 ¢ = floor((2**31 - 1)/25) & -4.
add g,q,cC Add c.

shrri q,q,2 Rotate right two positions.
shri c,c,1 Conpute const. for conpari son.
cnpleu t,q,c Conpare g and c, and

bt t,is_nmult branch if nis a nult. of 100.

| think that | shall never envision

An op unlovely as division.

An op whose answer must be guessed

And then, through multiply, assessed,;

An op for which we dearly pay,

In cycles wasted every day.

Division code is often hairy;

Long division's downright scary.

The proofs can overtax your brain,

The celling and floor may drive you insane.
Good code to divide takes a Knuthian hero,

But even God can't divide by zero!

Chapter 11. Some Elementary Functions

Integer Square Root

Integer Cube Root

Integer Exponentiation

Integer L ogarithm

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

11-1 Integer Square Root

By the "integer square root" function, we mean the function Lﬂﬁ J'To extend its range of application and to
avoid deciding what to do with a negative argument, we assume x is unsigned. Thus, 0 Sx S22 1,

Newton's Method

For floating-point numbers, the square root is almost universally computed by Newton's method. This method

begins by somehow obtaining a starting estimate g, of ’JG *Then, a series of more accurate estimatesis
obtained from

H.lrrl = [Hu + i]"flj'

The iteration converges quadratically—that is, if at some point is accurate to n bits, then g,, + 1 iSaccurate to 2n
bits. The program must have some means of knowing when it has iterated enough, so it can terminate.

It is a pleasant surprise that Newton's method works fine in the domain of integers. To see this, we need the
following theorem:

THEOREM. Let g, . = |_|[g+ |_n,r" guj}f EJ, with g, a integers greater
than Q. Then

{a)if g, = |_..,.I'r-:_.'J then LJ&J S 8,1 =8, and
) if g, = Lofa] then | Jal<g, . <l dal+1.

That is, if we have an integral guess g,, to Lﬁjthat Is too high, then the next guess g,, + ; will be strictly less

than the preceding one, but not less than Lﬁ J'Therefore, If we start with a guess that's too high, the sequence

converges monotonically. If the guess En = L‘Jﬁ J "then the next guessis either equal to g,, or is 1 larger. This
provides an easy way to determine when the sequence has converged: If we start with

-
Bo= |- *'G J convergence has occurred when g, + 1 :i'gn, and then the result is precisely g,

The case a = 0, however, must be treated specially, because this procedure would lead to dividing O by 0.

Proof. (a) Because gy, is an integer,

Bus1 = [(E+_§JJIEJ = ug,ﬁ;—:szJ - “g,ﬁ;—:}fzJ _ FE;{:J

Because &n 7 |—“"lr';Jand 0, IS an integer, En = Jf-{'Defines by g, = (1 +E}“'E"Thens>0and

4 3 .
ot g, ta
,:' :-'.';:l':¢+1.£ 1;. ¥
“&n “8n
4 4
(I+eyatal_,]{RI:"'RJ
4+ ’
2(1 +€)afa | 28,
2+2g+¢°
——]| = [P < qr
\- E{J-"i'Ej ,,Jf‘-- Enal En
2+ 2
———— | S8, 1 B
LE(I +m'f_ Bns 1= En
L’jf-{_ scr'f;,-+] {.’-':l'.lr'

(b) Because £n = l—"mj Ja-1 <y E“"JI';'SJothat ga2a<(g+ 1) Hencewe have

‘L':—'E-I-RE E:r'fu'l' | S 11;_:+ {'H” * II] .
2g., 2g,

1
L-EriJS£r4+IS Ent I +i!"_,"J'

.

LJ.TIJ Sg, =g, + 1] (becanse g, is an integer and 1 <1),

28,
[al<g, . <le.+1=LJal+1

The difficult part of using Newton's method to calculate |-'ﬁ' J IS getting the first guess. The procedure of

Figure 11-1 sets the first guess g, equal to the least power of 2 that is greater than or equal to ‘ﬁ *For example,
forx=4,gy=2,andfor x=5, g5 = 4.

Figure 11-1 Integer square root, Newton's method.

int isgrt(unsigned x) {
unsi gned x1;

int s, g0, 91;

If (x <= 1) return x;

s = 1;

x1l =x - 1;

I f (x1 > 65535) {s = s + 8; x1 = x1 >> 16;}

I f (x1 > 255) {s = s + 4; x1 = x1 >> 8;}

i f (x1 > 15) {s =s + 2; x1 =x1 >> 4;}

i f (x1 > 3) {s =s + 1;}

g0 = 1 << s; [l g0 = 2**s,

gl = (g0 + (x >>s)) > 1; [/ g1 = (g0 + x/g0)/2.

while (gl < g0) { /1 Do while approximtions
g0 = g1; /'l strictly decrease.
gl = (g0 + (x/g0)) >> 1;

}

return go;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list01#ch11list01

Because the first guess gq is a power of 2, it is not necessary to do areal division to get g,; instead, a shift right
suffices.

Because the first guessis accurate to about 1 bit, and Newton's method converges quadratically (the number of
bits of accuracy doubles with each iteration), one would expect the procedure to converge within about five
iterations (on a 32-hit machine), which requires four divisions (because the first iteration substitutes a shift
right). An exhaustive experiment reveals that the maximum number of divisionsisfive, or four for arguments
up to 16,785,407.

If number of leading zeros is available, then getting the first guessis very simple: Replace the first seven
executable lines in the procedure above with

If (x <= 1) return Xx;
s =16 - nlz(x - 1)/2;

Another aternative, if number of leading zerosis not available, is to compute s by means of a binary search
tree. This method permits getting a slightly better value of g: the least power of 2 that is greater than or equal

to |- ‘ﬁ'J For some values of x, this gives a smaller value of gg, but a value large enough so that the
convergence criterion of the theorem still holds. The difference in these schemesisillustrated below.

Range of x for Figure 11-1 Range of x for Figure 11-2 First Guess g
0 0 0
1 1to3 1
2to4 4t08 2
510 16 O9to 24 4
17to 64 2510 80 8
65 to 256 81 to 288 16
228 + 1t0 230 (214 +1)2t0 (215+ 1)2- 1 215

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list01#ch11list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list02#ch11list02

230 +1102%2- 1 (215+1)2t0 232- 1 216

This procedure is shown in Figure 11-2. It is convenient there to treat small values of x (0 <x ':—:24) specialy,
so that no divisions are done for them.

Figure 11-2 Integer square root, binary search for first guess.

int isqrt(unsigned x) {
int s, g0, 91,

I f (x <= 4224)
I (x <= 24)
If (x <= 3) return (x + 3) >> 2;
else if (x <= 8) return 2;
el se return (x >> 4) + 3;
else if (x <= 288)
If (x <= 80) s = 3; else s = 4;
else if (x <= 1088) x = 5; else s
else if (x <= 1025*1025 - 1)
If (x <= 257*257 - 1)
I1f (x <= 129*129 - 1) s =
else if (x <= 513*513 - 1) s
else if (x <= 4097*4097 - 1)
I f (x <= 2049*2049 - 1) s = 11; else s
else if (x <= 16385*16385 - 1)
If (x <= 8193*8193 - 1) s = 13; else s = 14;
else if (x <= 32769*32769 - 1) s = 15; else s = 16;
g0 = 1 << s; /'l g0 = 2**s,

:6’

7: else s = 8;
=9 else s = 10;

I
[
N

/1 Continue as in Figure 11-1.

The worst-case execution time of the algorithm of Figure 11-1, on the basic RISC, is about 26 + (D + 6)n
cycles, where D isthe divide timein cycles and n is the number of times the while-loop is executed. The worst-
case execution time of Figure 11-2 isabout 27 + (D + 6)n cycles, assuming (in both cases) that the branch
instructions take one cycle. The table below gives the average number of times the loop is executed by the two
algorithms, for x uniformly distributed in the indicated range.

X Figure1l-1 Figure11-2

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list02#ch11list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list01#ch11list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list02#ch11list02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list01#ch11list01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list02#ch11list02

0to9 0.80 0

0to 99 1.46 0.83
0to 999 1.58 1.44
0 to 9999 2.13 2.06
O0to232-1 2.97 2.97

If we assume a divide time of 20 cycles and x ranging uniformly from 0 to 9999, then both algorithms execute
in about 81 cycles.

Binary Search

Because the algorithms based on Newton's method start out with a sort of binary search to obtain the first guess,
why not do the whole computation with a binary search? This method would start out with two bounds, perhaps
initialized to 0 and 216, It would make a guess at the midpoint of the bounds. If the square of the midpoint is
greater than the argument X, then the upper bound is changed to be equal to the midpoint. If the square of the
midpoint is less than the argument x, then the lower bound is changed to be equal to the midpoint. The process
ends when the upper and lower bounds differ by 1, and the result is the lower bound.

This avoids division, but requires quite afew multiplications—16 if 0 and 216 are used as the initial bounds.
(The method gets one more bit of precision with each iteration.) Figure 11-3 illustrates a variation of this

procedure, which usesinitial values for the bounds that are slight improvements over 0 and 216, The procedure
shown in Figure 11-3 also saves a cycle in the loop, for most RISC machines, by altering a and b in such away

that the comparison isb Zarather thanb- a =1.
Figure 11-3 Integer square root, simple binary search.

int isqrt(unsigned x) {

unsigned a, b, m /1 Limts and m dpoint.
a = 1;

b =(x > 5) + 8§; /'l See text.

if (b > 65535) b = 65535;

do {

m= (a + b) >> 1;
If (mMm>x) b =m- 1;
el se a=m+ 1;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list03#ch11list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list03#ch11list03

} while (b >= a);
return a - 1;

The predicates that must be maintained at the beginning of each iteration are & = [e]+ land

bz LNG'J'The initial value of b should be something that's easy to compute and close to I—“ﬁ J "Reasonable
initial valuesarex, x+4+1,x+8+2,x+ 16 +4,x+ 32+ 8, x+ 64 + 16, and so on. Expressions near the
beginning of thislist are better initial bounds for small x, and those near the end are better for larger x. (The
value x + 2 + 1 is acceptable, but probably not useful, because x + 4 + 1 is everywhere a better or equal bound.)

Seven variations on the procedure shown in Figure 11-3 can be more or less mechanically generated by
substitutinga + 1 for a, or b- 1 for b, or by changingm=(a+b) +2tom=(a+ b+ 1) + 2, or some
combination of these substitutions.

The execution time of the procedure shown in Figure 11-3 isabout 6 + (M + 7.5)n, where M isthe

multiplication timein cycles and n is the number of times the loop is executed. The table below givesthe
average number of timesthe loop is executed, for x uniformly distributed in the indicated range.

X Average Number of Loop Iterations
Oto9 3.00
0to 99 3.15
0to0 999 4.68
0 to 9999 7.04
0t0232-1 16.00

If we assume a multiplication time of 5 cycles and x ranging uniformly from 0 to 9999, the algorithm runs in
about 94 cycles. The maximum execution time (n = 16) is about 206 cycles.

If number of leading zeros is available, the initial bounds can be set from

b
a

(1 << (33 - nlz(x))/2) - 1;
(b + 3)/2;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list03#ch11list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list03#ch11list03

Thatis, & = 203~ "01 52 2 1 These are very good bounds for small values of x (one loop iteration for O

<x ':—:15), but only a moderate improvement, for large X, over the bounds calculated in Figure 11-3. For x in

the range 0 to 9999, the average number of iterationsis about 5.45, which gives an execution time of about 74
cycles, using the same assumptions as above.

A Hardware Algorithm

There is a shift-and-subtract algorithm for computing the square root that is quite similar to the hardware
division algorithm described in Figure 9-2 on page 149. Embodied in hardware on a 32-bit machine, this
algorithm employs a 64-hit register that isinitialized to 32 0-bits followed by the argument x. On each iteration,
the 64-bit register is shifted |eft two positions, and the current result y (initially 0) is shifted left one position.
Then 2y + 1 is subtracted from the left half of the 64-bit register. If the result of the subtraction is nonnegative,
it replaces the left half of the 64-bit register, and 1 is added to y (this does not require an adder, because y ends
in O at this point). If the result of the subtraction is negative, then the 64-bit register and y are left unaltered. The
iteration is done 16 times.

This agorithm was described in 1945 [JVN].

Perhaps surprisingly, this process runs in about half the time of that of the 64 + 32 =32 hardware division
algorithm cited, because it does half as many iterations and each iteration is about equally complex in the two
algorithms.

To code this algorithm in software, it is probably best to avoid the use of a doubleword shift register, which
requires about four instructions to shift. The algorithm in Figure 11-4 [GLS1] accomplishes this by shifting y

and amask bit mto theright. It executes in about 149 basic RISC instructions (average). The two expressions y
| mcouldalsobey + m

Figure 11-4 Integer square root, hardware algorithm.

int isgrt(unsigned x) {
unsigned m vy, b;

m = 0x40000000;

y = 0;
while(m!= 0) { // Do 16 tines.
b=y | m
y =y >> 1;
if (x >=b) {
X =X - b;
y =y | m

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list03#ch11list03
http:// /?xmlid=0-201-91465-4/ch09lev1sec4#ch09list02
http:// /?xmlid=0-201-91465-4/biblio#bib36
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list04#ch11list04
http:// /?xmlid=0-201-91465-4/biblio#bib19

m=m>> 2;

}

return vy,

The operation of this algorithm is similar to the grade-school method. It isillustrated below, for finding
|- W IWJ on an 8-bit machine.

1011 0011 xO Initially, x = 179 (0xB3).
-1 bl

0111 0011 «x1 0100 0000 y1
- 101 b2 0010 0000 y2

0010 0011 x2 0011 0000 y2
- 11 01 b3 0001 1000 y3

0010 0011 x3 0001 1000 y3 (Can't subtract).
- 1 1001 b4 0000 1100 vy4

0000 1010 x4 0000 1101 vy4
Theresult is 13 with aremainder of 10 left in register X.

It ispossibleto eiminatethei f X >= b test by the usua trickery involving shift right signed 31. It can be

proved that the high-order bit of b is always zero (in fact, b <s. 228), which simplifiesthe X >= b predicate
(see page 22). Theresult isthat the if statement group can be replaced with

t = (i
X =X
y =y

nt)(x | ~(x - b)) >> 31; [l -1 1if x >= b, else 0.
b &t);

()
(M&t);

This replaces an average of three cycles with seven, assuming the machine has or not, but it might be
worthwhile if aconditional branch in this context takes more than five cycles.

Somehow it seems that it should be easier than some hundred cycles to compute an integer square root in
software. Toward this end, we offer the expressions below to compute it for very small values of the argument.
These can be useful to speed up some of the algorithms given above, if the argument is expected to be small.

The expression iscorrect in therange and usesthis many instructions (full RI1SC).
X Otol 0
x>0 Oto3 1
(x+3)54 Oto3 2
x5 (x ki) Oto3 2
T (x=1) 0to5 2
(x+12) %8 1to8 2
(x+15) L8 41015 2
x>0)+(x>3) Oto8 3
x>0)+(x>3)+(x>8) Oto 15 5

Ah, the elusive square root,

It should be a cinch to compute.
But the best we can do

|'s use power's of two

And iterate the method of Newt!

11-2 Integer Cube Root

For cube roots, Newton's method does not work out very well. The iterative formulais a bit complex:

. — l Ty +i
Xpsl = L el
3 Xy

and there is of course the problem of getting a good starting value xg.

However, there is a hardware algorithm, similar to the hardware algorithm for square root, that is not too bad
for software. It is shown in Figure 11-5.

Figure 11-5 Integer cube root, hardware algorithm.

int icbrt(unsigned x) {
i nt s;
unsi gned vy, b;

s = 30;
y = 0;
while(s >= 0) { [/ Do 11 ti nes.
y = 2%y;
b = (3*y*(y + 1) + 1) <<s;
s =s - 3
if (x >=b) {
X =X - b;
y =y + 1;
}
}

return vy;

The three add's of 1 can be replaced by or's of 1, because the value being incremented is even. Even with this
change, the algorithm is of questionable value for implementation in hardware, mainly because of the
multiplicationy * (y + 1).

This multiplication is easily avoided by applying the compiler optimization of strength reduction to they -

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list05#ch11list05

squared term. Introduce another unsigned variable y 2 that will have the value of Y -squared, by updating y 2
appropriately wherever y receives anew value. Just beforey = 0 insert y2 = 0. Just beforey = 2* y insert
y2 =4*y2. Changetheassignmenttob tob = (3*y2 + 3*y + 1) <<'s (and factor out the 3). Just before
y=y+1,inserty2 =y2+2*y + 1. Theresulting program has no multiplications except by small

constants, which can be changed to shift's and add's. This program has three add's of 1, which can al be
changed to or's of 1. It isfaster unless your machine's multiply instruction takes only two or fewer cycles.

Caution: [GL S1] points out that the code of Figure 11-5, and its strength-reduced derivative, do not work if
adapted in the obvious way to a 64-bit machine. The assignment to b can then overflow. This problem can be
avoided by dropping the shift left of S from the assignment to b, inserting after the assignment to b the
assignment bs = b << s, and changing thetwo linesi f (x >=Db) {x=x- Db ...toif (x>=Dbs &b
==(bs>>s)) {x=x-Dbs ...

http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list05#ch11list05

11-3 Integer Exponentiation
Computing x" by Binary Decomposition of n

A well-known technique for computing X", when n is a nonnegative integer, involves the binary representation
of n. The technique applies to the evaluation of an expression of theform x ¢ x ¢ x ¢ X ... * X where « isany
associ ative operation, such as addition, multiplication including matrix multiplication, and string concatenation
(as suggested by the notation (‘ab')3 = 'ababab’). As an example, suppose we wish to compute y = x13. Because
13 expressed in binary is 1101 (that is, 13=8+4 + 1),

xl3 = gphtd+l = x¥. 34, 1

Thus, x13 may be computed as follows:

£ X7
ty 17
ty < 13

Vé—lty ly- X

This requires five multiplications, considerably fewer than the 12 that would be required by repeated
multiplication by x.

If the exponent is avariable, known to be a nonnegative integer, the technique can be employed in a subroutine,
as shown in Figure 11-6.

Figure 11-6 Computing x" by binary decomposition of n.

int iexp(int x, unsigned n) {

int p, vy,

y = 1; /1 Initialize result
p = X; /! and P.
whi l e(1) {

I1f (n &1) y = p*ry; /1 If nis odd, mult by p.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list06#ch11list06

n=n>1; [/ Position next bit of n.
If (n ==0) return vy; [l If no nore bits in n.
p = p*p; /1 Power for next bit of n.

The number of multiplications done by this method is, for exponent n :31,

L!t]_l;'_EHJ + nbitsi{n) - 1.

Thisis not always the minimal number of multiplications. For example, for n = 27 the binary decomposition
method computes

RS G P L

which requires seven multiplications. However, the scheme illustrated by

(@)

requires only six. The smallest number for which the binary decomposition method is not optimal isn =15
(hint: x15 = (x3)9).

Perhaps surprisingly, there is no known simple method that, for all n, finds an optimal sequence of
multiplications to compute x". The only known methods involve an extensive search. The problem is discussed
at some length in [Knu2, sec. 4.6.3].

The binary decomposition method has a variant that scans the binary representation of the exponent in left-to-
right order [Rib, 32], which is analogous to the left-to-right method of converting binary to decimal. Initialize

theresult y to 1, and scan the exponent from left to right. When a0 is encountered, squarey. Whenalis

encountered, square'y and multiply it by x. This computes '* = x''"':

(-0t 0hx

http:// /?xmlid=0-201-91465-4/biblio#bib39
http:// /?xmlid=0-201-91465-4/biblio#bib53

It always requires the same number of (nontrivial) multiplications as the right-to-left method of Figure 11-6.

2" in Fortran

TheIBM XL Fortran compiler takes the definition of this function to be

20 = pn=30,
powlin) = <23 5 = 31,

O, n<0orn=3i2.

It is assumed that n and the result are interpreted as signed integers. The ANSI/ISO Fortran standard requires

that the result be 0 if n < 0. The definition above for n :331 seems reasonable in that it is the correct result
modulo 232, and it agrees with what repeated multiplication would give.

The standard way to compute 2" isto put the integer 1 in aregister and shift it left n places. This does not
satisfy the Fortran definition, because shift amounts are usually treated modulo 64 or modulo 32 (on a 32-bit
machine), which gives incorrect results for large or negative shift amounts.

If your machine has number of leading zeros, pow2(n) may be computed in four instructions as follows [Shep]:

x « nlz(n = 5); Jxe=3210<n<31, x <32 otherwise.

XX 5 e 1ir0=n<3l, 0otherwise.

pow2 —x s n;

The shift right operations are "logical" (not sign-propagating), even though nisasigned quantity.

If the machine does not have the "nlz" instruction, its use above can be replaced with one of the x = 0 tests

i T
given in "Comparison Predicates’ on page 21, changing the expression ¥ = 2 10 X 3 31. o posqibly better

method is to realize that the predicate O <x S31is equivalent to * < 32, and then simplify the expression for

X < Y given in the cited section; it becomes -x & (x - 32). This gives asolution in five instructions (four if the
machine has and not):

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list06#ch11list06
http:// /?xmlid=0-201-91465-4/biblio#bib56
http:// /?xmlid=0-201-91465-4/ch02lev1sec11#ch02lev1sec11

xe——n & (n-32); Hx<0f0<n <3l
X X 3 Hx=11f0<n<31.0otherwise.

powl &= x e n;

11-4 Integer Logarithm

By the "integer logarithm" function we mean the function l- log, 'I-J'Where X isapositiveinteger and b isan
integer greater than or equal to 2. Usually, b = 2 or 10, and we denote these functions by "ilog2" and "ilog10,"
respectively. We use "ilog" when the base is unspecified.

It is convenient to extend the definition to x = 0 by defining ilog(0) = -1 [CJS]. There are several reasons for
this definition:

» Thefunctionilog2(x) isthen related very simply to the number of leading zeros function, nlz(x),
by the formula shown below, including the case x = 0. Thus, if one of these functionsis implemented
in hardware or software, the other is easily obtained.

log2ix) = 31 —nlzix)

 Itiseasy to compute [log(x)] g ng the formula below. For x = 1, this formulaimplies that ilog
0)=-1.

[Mogix)] = ilogix= 1)+ 1

* It makesthe following identity hold for x = 1 (but it doesn't hold for x = 0):

Hog2i(x +2) = ilog2(x) - |

e It preservesthe mathematical identity:

[logpx | = | (logg2)logsx |

e It makestheresult of ilog(x) asmall dense set of integers (-1 to 31 for ilog2(x) on a 32-hit
machine, with x unsigned), making it directly useful for indexing atable.

http:// /?xmlid=0-201-91465-4/biblio#bib7

« Itfalsnaturaly out of several algorithms for computing ilog2(x) and ilog10(x).

Unfortunately, it isn't the right definition for "number of digits of x," whichisilog(x) + 1 for all x except x = 0.
But it seems best to consider that anomalous.

For x < 0, ilog(x) is left undefined. To extend its range of utility, we define the function as mapping unsigned
numbers to signed numbers. Thus, a negative argument cannot occur.

Integer Log Base 2

Computing ilog2(x) is essentially the same as computing the number of leading zeros, which isdiscussed in
"Counting Leading 0's" on page 77. All the algorithms in that section can be easily modified to compute ilog2

(x) directly, rather than by computing nlz(x) and subtracting the result from 31. (For the algorithm of Figure 5-
11 on page 80, change theliner et ur n pop(~x) toret urnpop(x) - 1).

Integer Log Base 10

This function has application in converting a number to decimal for inclusion into aline with leading zeros
suppressed. The conversion process successively divides by 10, producing the least significant digit first. It
would be useful to know ahead of time where the least significant digit should be placed, to avoid putting the
converted number in atemporary area and then moving it.

To compute ilog10(x), atable search is quite reasonable. This could be a binary search, but because the table is
small and in many applications x is usually small, asimple linear search is probably best. This rather
straightforward program is shown in Figure 11-7.

Figure 11-7 Integer log base 10, simple table search.

int iloglO(unsigned x) {
int i;
static unsigned table[11] = {0, 9, 99, 999, 9999,
99999, 999999, 9999999, 99999999, 999999999,
OXFFFFFFFF} ;

for (i =-1; ; i++) {

If (x <= table[i+1]) return i;

}

Q4 & o x
On the basic RISC, this program can be implemented to execute in about ?+ 4'-1"5 ot Jins:tructions. Thus, it

http:// /?xmlid=0-201-91465-4/ch05lev1sec3#ch05lev1sec3
http:// /?xmlid=0-201-91465-4/ch05lev1sec3#ch05list10
http:// /?xmlid=0-201-91465-4/ch05lev1sec3#ch05list10
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list07#ch11list07

executesin five to 45 instructions, with perhaps 13 (for 10 <x ':—:99) being typical.

The program in Figure 11-7 can easily be changed into an "in register" version (not using atable). The
executable part of such aprogram is shown in Figure 11-8. This might be useful if the machine has afast way
to multiply by 10.

Figure 11-8 Integer log base 10, repeated multiplication by 10.

p = 1

for (1 =-1; i <= 8; i++) {
if (x < p) return i;
p = 10*p;

} -

return I ;

”} + ﬁl_[ﬂg“pTJ

This program can be implemented to execute in about instructions on the basic RISC

(counting the multiply as one instruction). This amounts to 16 instructions for 10 <x <99.

A binary search can be used, giving an agorithm that is loop-free and does not use a table. Such an algorithm

might compare x to 104, then to either 102 or to 106, and so on, until the exponent n is found such that 10" <x

< 10" * 1, The paths execute in ten to 18 instructions, four or five of which are branches (counting the final
unconditional branch).

The program shown in Figure 11-9 is amodification of the binary search that has a maximum of four branches

on any path, and is written in away that favors small x. It executesin six basic RISC instructions for 10 <x
<09, and in 11 to 16 instructions for x = 100,

Figure 11-9 Integer log base 10, modified binary search.

int iloglO(unsigned x) {
if (x > 99)
if (x < 1000000)
if (x < 10000)
return 3 + ((int)(x - 1000) >> 31);
el se
return 5 + ((int)(x - 100000) >> 31);
el se
if (x < 100000000)
return 7 + ((int)(x - 10000000) >> 31);
el se

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list07#ch11list07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list08#ch11list08
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list09#ch11list09

return 9 + ((int)((x-1000000000)&-x) >> 31);
el se
If (x >9) return 1;
el se return ((int)(x - 1) >> 31);

}

The shift instructions in this program are signed shifts (which is the reason for the (1 nt) casts). If your

machine does not have this instruction, one of the alternatives below, which use unsigned shifts, may be
preferable. These areillustrated for the case of thefirst r et ur n statement. Unfortunately, the first two require

subtract from immediate for efficient implementation, which most machines don't have. The last involves
adding a large constant (two instructions), but this does not matter for the second and third r et ur n

statements, which require adding a large constant anyway. The large constant is 231 - 1000.

return 3 - ((x - 1000) >> 31);
return 2 + ((999 - x) >> 31);
return 2 + ((x + 2147482648) >> 31);

An alternative for the fourthr et ur n statement is

return 8 + ((x + 1147483648) | x) >> 31;

where the large constant is 231 - 10°. This avoids both the and not and the signed shift.

Alternatives for the last if-else construction are

return ((int)(x - 1) >> 31) | ((unsigned)(9 - x) >> 31);
return (x >9) + (x >0) - 1;

elther of which saves a branch.

If nlz(x) or ilog2(x) is available as an instruction, there are better and more interesting ways to compute ilog10
(x). For example, the program in Figure 11-10 doesit in two table lookups [CJS].

Figure 11-10 Integer log base 10 from log base 2, double table lookup.

I nt iloglO(unsigned x) {
I nt vy;
static unsigned char tablel[33] = {9, 9, 9, 8, 8, 8,
7, 7, 7, 6, 6, 6, 6, 5 5, 5, 4, 4, 4, 3, 3, 3, 3,
2, 2, 2, 1, 1, 1, 0O, O, O, O};
static unsigned table2[10] = {1, 10, 100, 1000, 10000,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list10#ch11list10
http:// /?xmlid=0-201-91465-4/biblio#bib7

100000, 1000000, 10000000, 100000000, 1000000000}

y = tablel[nlz(x)];
I1f (x < table2[y]) v =y - 1,
return y;

Fromt abl el an approximation to ilog10(X) is obtained. The approximation is usually the correct value, but

itistoo high by 1 for x =0 and for xin therange 8 to 9, 64 to 99, 512 to 999, 8192 to 9999, and so on. The
second table gives the value below which the estimate must be corrected by subtracting 1.

This scheme uses atotal of 73 bytes for tables, and can be coded in only six instructions on the IBM
System/370 [CJS] (to achieve this, thevaluesint abl el must be four times the values shown). It executesin

about ten instructions on a RISC that has number of leading zeros but no other esoteric instructions. The other
methods to be discussed are variants of this.

Thefirst variation eliminates the conditional branch that results from the if statement. Actually, the program in
Figure 11-10 can be coded free of branches if the machine has the set |ess than unsigned instruction, but the

method to be described can be used on machines that have no unusual instructions (other than number of
leading zeros).

The method is to replace the if statement with a subtraction followed by a shift right of 31 so that the sign bit

can be subtracted fromy. A difficulty occurs for large x (x =081 + 109) which can be fixed by adding an entry
tot abl e2, asshownin Figure 11-11.

Figure 11-11 Integer log base 10 from log base 2, double table lookup, branch-free.

int iloglO(unsigned x) {

int vy;

static unsigned char tablel[33] = {10, 9, 9
7, 7, 7, 6, 6, 6, 6, 5 5, 5 4, 4, 4, 3,
2, 2, 2, 1, 1, 1, 0O, O, O, O};

static unsigned table2[11] = {1, 10, 100, 1000, 10000,
100000, 1000000, 10000000, 100000000, 21000000000,
0} ;

y tabl el[nl z(x)];
y =y - ((x - table2[y]) >> 31);
return vy,

This executes in about 11 instructions on a RISC that has number of leading zeros but is otherwise quite

http:// /?xmlid=0-201-91465-4/biblio#bib7
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list10#ch11list10
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list11#ch11list11

"basic.”" It can be modified to return the value O, rather than -1, for x = 0 (which is preferable for the decimal
conversion problem) by changing the last entry int abl el to 1 (that is, by changing "0, 0, 0, 0" to "0, 0, 0, 1").

The next variation replaces the first table lookup with a subtraction, a multiplication, and a shift. This seems
likely to be possible because l0g,ox and log,x are related by a multiplicative constant, namely 1og,2 =

0.30103.... Thus, it may be possible to compute ilog10(x) by computing Le ilog2(x) Jsor some suitable c
~=0.30103, and correcti ng the result by using atable suchast abl €2 in Figure 11-11.

To pursue this, let 10og,52 = ¢ + €, where ¢ > O isarational approximation to 10g;,2 that is a convenient

multiplier, and € > 0. Then for x :31,

ilogl0{x) = | logpx | = | (¢ +€)log,x |
| € logax | <ilogl0(x) = | ¢ logox + € log,x |
Leilog2(x)] < ilogl0(x) < | e (ilog2(x) + 1) + & log,x |
< | cilog2(x) + ¢ + € log,x |
<Leilog2(x)]+ | e +elogyx |+ 1.

Thus, if we choose ¢ so that ¢ + glog,x < 1, then Le i]"*"552{-1'“']'1approxi mates ilog10(x) with an error of 0 or +1.

Furthermore, if we take ilog2(0) = ilog10(0) = -1, then Leilog2(0)] = ilog10(0) (because 0 < ¢ =1), so we
need not be concerned about this case. (There are other definitions that would work here, such asilog2(0) =
ilog10(0) = 0).

Because € = 10g,(2 - ¢, we must choose ¢ so that

¢+ (log, 2 -c)log,.x<1, or

c(log,x = 1) > (log,2)og.x — 1.

Thisissatisfied for x = 1 (because ¢ < 1) and 2. For larger X, we must have

. (log,,2)log,x — 1
log.x — 1

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list11#ch11list11

The most stringent requirement on ¢ occurs when x is large. For a 32-bit machine, x < 232, so choosing

{_}ﬂ-][}lﬂl -32 -1

=2
0. 0.27848

suffices. Because ¢ < 0.30103 (because € > 0), ¢ = 9/32 = 0.28125 is a convenient value. Experimentation
reveals that coarser values such as 5/16 and 1/4 are not adequate.

This leads to the scheme illustrated in Figure 11-12, which estimates low and then corrects by adding 1. It

executesin about 11 instructions on a RISC that has number of leading zeros, counting the multiply as one
instruction.

Figure 11-12 Integer log base 10 from log base 2, one table lookup.

static unsigned table2[10] = {0, 9, 99, 999, 9999,
99999, 999999, 9999999, 99999999, 999999999} ;

y = (9*(31 - nlz(x))) >>5;
If (x > table2[y+1l]) v =y + 1;
return vy,

This can be made into a branch-free version, but again there is a difficulty with large x (x > 231 + 109) which
can be fixed in either of two ways. One way is to use adifferent multiplier (19/64) and a slightly expanded
table. The program is shown in Figure 11-13 (about 11 instructions on a RISC that has number of leading zeros,
counting the multiply as one instruction).

Figure 11-13 Integer log base 10 from log base 2, one table lookup, branch-free.

Int iloglO(unsigned x) {
I nt vy;
static unsigned table2[11] = {0, 9, 99, 999, 9999,
99999, 999999, 9999999, 99999999, 999999999,
OXFFFFFFFF} ;

y = (19*(31 - nlz(x))) >> 6;
y =y + ((table2[y+l] - x) >> 31);
return Y,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list12#ch11list12
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list13#ch11list13

The other "fix" isto or x into the result of the subtraction, to force the sign bit to be on for x :3231; that is,
change the second executable line of Figure 11-12 to

y =y + (((table2[y+1] - x) | x) >> 31);

Thisisthe preferable program if multiplication by 19 is substantially more difficult than multiplication by 9 (as
it isfor a shift-and-add sequence).

For a 64-bit machine, choosing

0.30103.64 - 1
-

= (),28993
4

suffices. The value 19/64 = 0.296875 is convenient, and experimentation reveals that no coarser valueis
adequate. The program is (branch-free version)

unsi gned table2[20] = {0, 9, 99, 999, 9999, ...,
9999999999999999999} ;

y = ((19*(63 - nlz(x)) >> 6;

y =y + ((table2[y+l] - Xx) >> 63;

return y;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch11lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch11list12#ch11list12

Chapter 12. Unusual Bases for Number Systems

This section discusses afew unusual positional number systems. They are just interesting curiosities and are
probably not practical for anything. We limit the discussion to integers, but they can all be extended to include
digits after the radix point—which usually, but not always, denotes non-integers.

12-1 Base -2

By using -2 as the base, both positive and negative integers can be expressed without an explicit sign or other
irregularity such as having a negative weight for the most significant bit (Knu3). The digitsused are 0 and 1, as
in base +2; that is, the value represented by a string of 1's and 0'sis understood to be

q g
(a,...aua.aa,) = ﬁ,,{—il” + o+ ay(22) Fax(=2) +a(-2) +ay.

From this, it can be seen that a procedure for finding the base -2, or "negabinary,” representation of an integer is
to successively divide the number by -2, recording the remainders. The division must be such that it always
givesaremainder of O or 1 (the digits to be used); that is, it must be modulus division. As an example, the plan
below shows how to find the base -2 representation of -3.

:—; = 2 rem |
-

= = —=lremf0
-2

—1 = | rem |
2

1 _

— = O rem |
-2

Because we have reached a 0 quotient, the process terminates (if continued, the remaining quotients and
remainders would al be 0). Thus, reading the remainders upwards, we see that -3 iswritten 1101 in base -2.

Table 12-1 shows, on the left, how each bit pattern from 0000 to 1111 isinterpreted in base -2, and on the right,
how integersin the range -15 to +15 are represented.

Table 12-1. Conversions between Decimal and Base -2

n (base-2) n (decimal) n (decimal) n (base-2) -n (base-2)

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12table01#ch12table01

1 1 1 1 11

10 -2 2 110 10

11 -1 3 111 1101
100 4 4 100 1100
101 S S 101 1111
110 2 6 11010 1110
111 3 7 11011 1001
1000 -8 8 11000 1000
1001 -7 9 11001 1011
1010 -10 10 11110 1010
1011 -9 11 11111 110101
1100 -4 12 11100 110100
1101 -3 13 11101 110111
1110 -6 14 10010 110110
1111 -5 15 10011 110001

It is not obvious that the 2" possible bit patternsin an n-bit word uniquely represent all integersin acertain
range, but this can be shown by induction. The inductive hypothesisis that an n-bit word represents all integers
in the range

Equation la

—(2n+ 1 _23/3 1o (27— 1)/ 3 for n even, and

Equation 1b

(= (22 - 2)3/3)to ((27+ 1 - 1)/3) for n odd.

Assume first that niseven. For n = 2, the representable integers are 10, 11, 00, and 01 in base -2, or

-2, 1,0, 1.

This agrees with (1a), and each integer in the range is represented once and only once.

A word of n + 1 bits can, with aleading bit of O, represent al the integers given by (1a). In addition, with a
leading bit of 1, it can represent all these integers biased by (-2)" = 2". The new rangeis

20 (20+1 _2)/3 10 2" + (27— 1)/3,

or

(2%~ 1)/3+ 1 to (2542 = 1)/3.

Thisis contiguous to the range given by (1a), so for aword size of n + 1 bits, all integersin the range

(271 -2}/ 3 10 (2742 - 1)/3

are represented once and only once. This agrees with (1b), with n replaced by n + 1.

The proof that (1a) follows from (1b), for n odd, and that all integers in the range are uniquely represented, is
similar.

To add and subtract, the usual rules, suchasO+1=1and1-1=0, of course apply. Because 2 is written 110,

and -1 iswritten 11, and so on, the following additional rules apply. These, together with the obvious ones,
suffice.

l+1 =110
IT+1 =10
l+14+1 =111
0-1=11
11-1=10

When adding or subtracting, there are sometimes two carry bits. The carry bits are to be added to their column,
even when subtracting. It is convenient to place them both over the next bit to the left, and ssimplify (when
possible) using 11 + 1 =0. If 11 iscarried to a column that contains two O's, bring down a1 and carry a 1.
Below are examples.

Addi ti on Subt racti on
11 1 11 11 1 11 1 1
1 0 1 1 1 19 1 0 1 0 1 21
+11 0 1 0 1 +(-11) -1 0 1 1 1 0 -(-38)
O 1 1 0 0 o 8 1 0 0 1 1 1 1 59

The only carriespossible are 0, 1, and 11. Overflow occurs if thereisacarry (either 1 or 11) out of the high-
order position. These remarks apply to both addition and subtraction.

Because there are three possibilities for the carry, a base -2 adder would be more complex than atwo's-
complement adder.

There are two ways to negate an integer. It may be added to itself shifted left one position (that is, multiply by -
1), or it may be subtracted from 0. There is no rule as ssmple and convenient as the *complement and add 1"
rule of two's-complement arithmetic. In two's-complement, this rule is used to build a subtracter from an adder

(to compute A - B form 4 + B+ 1). There does not seem to be any such simple device for base -2.

Multiplication of base -2 integersis straightforward. Just usetherulethat 1 x 1 =1 and O timeseither Oor 1is
0, and add the columns using base -2 addition.

Division, however, is quite complicated. It isarea challenge to devise areasonable hardware division
algorithm—that is, one based on repeated subtraction and shifting. Figure 12-1 shows an algorithm that is

expressed, for definiteness, for an 8-bit machine. It does modulus division (nonnegative remainder).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12list01#ch12list01

Figure 12-1 Division in base -2.

i nt divbn2(int n, int d) { /Il g =n/d in base -2.
int r, dw, ¢, q, i;
r = n; /1l Init. remainder.
dw = (-128) *d; /1 Position d.
= (-43)*d; /1 Init. conparand.
if (d >0) ¢c =c¢c + d;
q = 0; /1 Init. quotient.
for (1 =7; 1 >=0; i--) {
| f (d >0 N (1&) ==0"r1 >=2¢) {
=q | (1 << i); /'l Set a quotient bit.
r =r - dw /1 Subtract d shifted.
}
dw = dw/ (- 2); /1 Position d.
if (d >0) c =c - 2*d; /'l Set conparand for
else c =c + d; /1l next iteration.
c =c/l(-2);
}
return q; // Return quotient in
/'l base -2.
[/ Renminder is r,
} [l 0 <=71 < |d|.

Although this program is written in C and was tested on a binary two's-complement machine, that is immaterial
—it should be viewed somewhat abstractly. The input quantitiesn and d, and al internal variables except for

q, are smply numbers without any particular representation. The output ¢ isastring of bitsto be interpreted in
base -2.

Thisrequires alittle explanation. If the input quantities were in base -2, the algorithm would be very awkward
to express in an executable form. For example, thetest "i f (d > 0) " would have to test that the most

significant bit of d isin an even position. The additionin"c = ¢ + d" would have to be abase -2 addition. The
code would be very hard to read. The way the algorithm is coded, you should think of n and d as numbers

without any particular representation. The code shows the arithmetic operations to be performed, whatever
encoding is used. If the numbers are encoded in base -2, as they would be in hardware that implements this
algorithm, the multiplication by -128 is aleft shift of seven positions, and the divisions by -2 are right shifts of
one position.

As examples, the code computes values as follows:

divbm2(6, 2) = 7 (six divided by two is 111)

divbm2(-4, 3) = 2 (minus four divided by threeis 10_,)
divbm2(-4, -3) = 6 (minus four divided by minus 3is110.,)

Thestepq=q | (1<<i); representssimply setting biti of . Thenext line—r =r - dw—represents
reducing the remainder by the divisor d shifted |eft.

The algorithm is difficult to describe in detail, but we will try to give the general idea.

Consider determining the value of the first bit of the quotient, bit 7 of . In base -2 8-bit numbers that have

their most significant bit "on" range in value from -170 to -43. Therefore, ignoring the possibility of overflow,
the first (most significant) quotient bit will be 1 if (and only if) the quotient will be algebraically less than or
equal to -43.

Because n = qd + r and for a positive divisor r <d- 1, for apositive divisor the first quotient bit will be 1 iff n

<-43d+(d- 1), or n< - 43d + d. For anegative divisor, the first quotient bit will be 1iff n =-43d (r 20 for
modulus division).

Thus, thefirst quotient bitis 1 if

(d>0& =(nz-43d+d)) | (d<0& nz=-43d).

Ignoring the possibility that d = O this can be written as

d=>0&n2zc,

wherec=-43d+difd>0,andc=-43dif d<0.

Thisisthelogic for determining a quotient bit for an odd-numbered bit position. For an even-numbered
position, the logic is reversed. Hence the test includestheterm (1 &1) == 0. (The” character in the program

denotes exclusive or.)

At each iteration, C is set equal to the smallest (closest to zero) integer that must have a 1-bit at position i after
dividing by d. If the current remainder r exceeds that, then biti of g issettolandr isadjusted by
subtracting the value of a1 at that position, multiplied by the divisor d. No real multiplication is required here;

d issimply positioned properly and subtracted.

The algorithm is not elegant. It is awkward to implement because there are several additions, subtractions, and
comparisons, and there is even amultiplication (by a constant) that must be done at the beginning. One might
hope for a"uniform" algorithm-—one that does not test the signs of the arguments and do different things
depending on the outcome. Such a uniform agorithm, however, probably does not exist for base -2 (or for
two's-complement arithmetic). The reason for thisis that division isinherently a non-uniform process. Consider
the simplest algorithm of the shift-and-subtract type. This algorithm would not shift at all, but for positive
arguments would simply subtract the divisor from the dividend repeatedly, counting the number of subtractions
performed until the remainder isless than the divisor. But if the dividend is negative (and the divisor is
positive), the processis to add the divisor repeatedly until the remainder is O or positive, and the quotient is the
negative of the count obtained. The processis still different if the divisor is negative.

In spite of this, division isauniform process for the signed-magnitude representation of numbers. With such a
representation, the magnitudes are positive, so the algorithm can ssimply subtract magnitudes and count until the
remainder is negative, and then set the sign bit of the quotient to the exclusive or of the arguments, and the sign
bit of the remainder equal to the sign of the dividend (this gives ordinary truncating division).

The algorithm given above could be made more uniform, in a sense, by first complementing the divisor, if it is
negative, and then performing the steps given as simplified by having d > 0. Then a correction would be
performed at the end. For modulus division, the correction is to negate the quotient and leave the remainder
unchanged. This moves some of the tests out of the loop, but the algorithm as awholeis still not pretty.

It isinteresting to contrast the commonly used number representations and base -2 regarding the question of
whether or not the computer hardware treats numbers uniformly in carrying out the four fundamental arithmetic
operations. We don't have a precise definition of "uniformly," but basically it means free of operations that
might or might not be done, depending on the signs of the arguments. We consider setting the sign bit of the
result equal to the exclusive or of the signs of the arguments to be a uniform operation. Table 12-2 shows which

operations treat their operands uniformly with various number representations.

One's-complement addition and subtraction are done uniformly by means of the "end around carry" trick. For
addition, al bits, including the sign bit, are added in the usual binary way, and the carry out of the leftmost bit
(the sign bit) is added to the least significant position. This process always terminates right away (that is, the
addition of the carry cannot generate another carry out of the sign bit position).

Table 12-2. Uniform Operations in Various Number Encodings

Signed-magnitude One's-complement Two's-complement Base-2

addition no yes yes yes

subtraction no yes yes yes

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12table02#ch12table02

multiplication yes no no yes

division yes no no no

In the case of two's-complement multiplication, the entry is"yes" if only the right half of the doubleword
product is desired.

We conclude this discussion of the base -2 number system with some observations about how to convert
between straight binary and base -2.

To convert to binary from base -2, form aword that has only the bits with positive weight, and subtract a word
that has only the bits with negative weight, using the subtraction rules of binary arithmetic. An alternative
method that may be alittle ssmpler isto extract the bits appearing in the negative weight positions, shift them
one position to the left, and subtract the extracted number from the original number using the subtraction rules
of ordinary binary arithmetic.

To convert to base -2 from binary, extract the bits appearing in the odd positions (positions weighted by 2" with
n odd), shift them one position to the left, and add the two numbers using the addition rules of base -2. Here are
two examples:

Bi nary from base -2 Base -2 from bi nary
110111 (-13) 110111 (55)
- 101 (bi nary subtract) +101 (base -2 add)

...111110011 (-13) 1001011 (55)

On acompuiter, with its fixed word size, these conversions work for negative numbersiif the carries out of the
high-order position are ssimply discarded. To illustrate, the example on the right above can be regarded as
converting -9 to base -2 from binary if the word sizeis six hits.

The above agorithm for converting to base -2 cannot easily be implemented in software on a binary computer,
because it requires doing addition in base -2. Schroeppel [HAK, item 128] overcomes this with a much more

clever and useful way to do the conversionsin both directions. To convert to binary, his method is

B« (N@0bl0...1010) — 0b10...1010.

To see why thisworks, let the base -2 number consist of the four digits abcd. Then, interpreted (erroneoudly) in
straight binary, thisis 8a + 4b + 2c + d. After the exclusive or, interpreted in binary itis8(1-a) + 4b+ 2(1- ¢)
+ d. After the (binary) subtraction of 8 + 2, itis- 8a + 4b - 2c + d, which isits value interpreted in base -2.

http:// /?xmlid=0-201-91465-4/biblio#bib25

Schroeppel's formula can be readily solved for N in terms of B, so it gives athree-instruction method for

converting in the other direction. Collecting these results, we have the following formulas for converting to
binary, for a 32-bit machine:

B (N & 0x35555555) — (N & —0x55555555),
B N - ((N & 0SAAAAAAAA) =< 1),
B — (N @ OXAAAAAAAA) - DIXAAAAAAAA,

and the following, for converting to base -2 from binary:

N — (B + O0xAAAAAAAA) @ IxAAAAAAAAL

12-2 Base -1 + i

By using - 1 + i asthe base, wherei is J_l *all complex integers (complex numbers with integral real and
imaginary parts) can be expressed as a single "number" without an explicit sign or other irregularity.
Surprisingly, this can be done using only 0 and 1 for digits, and all integers are represented uniquely. We will
not prove this or much else about this number system, but will just describe it very briefly.

[1]
It isnot entirely trivial to discover how to write theinteger 2. However, this can be determined
algorithmically by successively dividing 2 by the base and recording the remainders. What does a"remainder”
mean in this context? We want the remainder after dividing by - 1 +itobeOor 1, if possible (so that the digits
will be 0 or 1). To seethat it is aways possible, assume that we are to divide an arbitrary complex integer a +
bi by - 1 +i. Then, wewish to find g and r such that g isacomplex integer,r =0or 1, and

[1] The interested reader might warm up to this challenge.

i+ hi = {qf+q‘;']|{— | +i)+r,

where g, and g; denote the real and imaginary parts of g, respectively. Equating real and imaginary parts and
solving the two simultaneous equations for g gives

bh—a+r
4, = =5 and
_ —ia=h+r
4y = ——

Clearly, if a and b are both even or are both odd, then by choosing r = 0, q isacomplex integer. Furthermore, if
one of a and b is even and the other is odd, then by choosing r = 1, g is acomplex integer.

Thus, the integer 2 can be converted to base - 1 + i by the plan illustrated below.

Because the real and imaginary parts of the integer 2 are both even, we simply do the division, knowing that the
remainder will be O:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12footnote01#ch12footnote01

2 _ 21— _
—1+i (=1+i)(=1-10)

] =irem(,

Because thereal and imaginary parts of - 1 - i are both odd, again we simply divide, knowing that the remainder
isO:

—1—i _ (= 1—i)=1-1)
1+i (=1+i)(=1-0)

= {remf().

Because the real and imaginary parts of i are even and odd, respectively, the remainder will be 1. It is simplest
to account for this at the beginning by subtracting 1 from the dividend.

=1 =1 (remainderis 1).
I+

Because the real and imaginary parts of 1 are odd and even, the next remainder will be 1. Subtracting this from
the dividend gives

iﬁ = 0 (remainder is 1).
1+

Because we have reached a 0 quotient, the process terminates, and the base - 1 + i representation for 2 is seen to
be 1100 (reading the remainders upwards).

Table 12-3 shows how each bit pattern from 0000 to 1111 isinterpreted in base - 1 + i, and how the real
integersin the range -15 to +15 are represented.

The addition rulesfor base - 1 + i (in addition to the trivial onesinvolving a0 bit) are asfollows:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12table03#ch12table03

1 + 1

1+1+1
l+1+1+1
l+1+1+1+1

l+1+14+1+1+1

Il +l+l+1l+1+1

Il+1+1+1+1+1+1+1

1100

1101

I T1OT 0000
111010001
11101 1100
111011101
1 11000000

Table 12-3. Conversions between Decimal and Base -1 + |

n (base-1+1i) n (decimal) n (decimal) n (base-1+1) -n (base-1+1)

0 0 0 0 0

1 1 1 1 11101

10 -1+ 2 1100 11100

11 [3 1101 10001
100 -2i 4 111010000 10000
101 1-2i) 111010001 11001101
110 -1-i 6 111011100 11001100
111 -i 7 111011101 11000001
1000 2+2i 8 111000000 11000000
1001 3+ 2 9 111000001 11011101
1010 1+ 3i 10 111001100 11011100
1011 2+ 3i 11 111001101 11010001

1100 2 12 100010000 11010000

1101 3 13 100010001 1110100001101
1110 1+i 14 100011100 1110100001100
1111 2+i 15 100011101 1110100000001

When adding two numbers, the largest number of carries that occursin one column is six, so the largest sum of
acolumn is 8 (111000000). This makes for a rather complicated adder. If one were to build a complex

[2]

arithmetic machine, it would no doubt be best to keep the real and imaginary parts separate, with each

represented in some sensible way such as two's-complement.

[2] This is the way it was done at Bell Labs back in 1940 on George Stibitz's Complex Number Calculator [Irvine].

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch12lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch12footnote02#ch12footnote02
http:// /?xmlid=0-201-91465-4/biblio#bib35

12-3 Other Bases

Thebase- 1 - i has essentially the same properties asthe base - 1 + i discussed above. If a certain bit pattern
represents the number a + bi in one of these bases, then the same bit pattern represents the number a - bi in the
other base.

Thebases1 +iand 1-i canalso represent all the complex integers, using only 0 and 1 for digits. These two
bases have the same complex-conjugate relationship to each other, asdo the bases-1 £ i. Inbases 1 £ i, the
representation of some integers has an infinite string of 1's on the left, similar to the two's-complement
representation of negative integers. This arises naturally by using uniform rules for addition and subtraction, as
in the case of two's-complement. One such integer is 2, which (in either base) iswritten ...11101100. Thus,
these bases have the rather complex additionrule 1 + 1 =...11101100.

By grouping into pairs the bitsin the base -2 representation of an integer, one obtains a base 4 representation
for the positive and negative numbers, using the digits-2, -1, 0, and 1. For example,

i

4 gocimey = 110110, = (~1)(1)(-2), = ~1-4"+1-4'-2.4",

Similarly, by grouping into pairsthe bitsin the base - 1 + i representation of a complex integer, we obtain a
base -2i representation for the complex integers using the digits 0, 1, - 1 +i, and i. Thisis abit too complicated
to be interesting.

The "quater-imaginary” system (Knu2) is similar. It represents the complex integers using 2i as a base, and the
digits 0, 1, 2, and 3 (with no sign). To represent some integers, namely those with an odd imaginary
component, it is necessary to use adigit to the right of the radix point. For example, i iswritten 10.2 in base 2i.

12- 4 What Is the Most Efficient Base?

Suppose you are building a computer and you are trying to decide what base to use to represent integers. For
the registers you have available circuits that are 2-state (binary), 3-state, 4-state, and so on. Which should you
use?

Let us assume that the cost of a b-state circuit is proportional to b. Thus, a 3-state circuit costs 50% more than a
binary circuit, a 4-state circuit costs twice as much as a binary circuit, and so on.

Suppose you want the registers to be able to hold integers from 0 to some maximum M. Encoding integers from

OtoM in base b requires rlmg;}f.w +1]'-ldigits (e.g., to represent all integers from 0 to 999,999 in decimal
requires 0g;4(1,000,000) = 6 digits).

One would expect the cost of aregister to be equal to the product of the number of digits required times the cost
to represent each digit:

¢ = klog,(M+1)-b,

where c isthe cost of aregister and k is a constant of proportionality. For agiven M, we wish to find b that
minimizes the cost.

The minimum of this function occurs for that value of b that makes dc/db = 0. Thus, we have

i ST :i] It1[M+1]]: _ Infr =1
EH;,{'”}IU‘:“{M + 1)) ﬂ'h[“}—lnb ln(M + ”[InhF .

ThisiszerowhenInb=1,orb=e.

Thisisnot avery satisfactory result. Because e ~=2.718, 2 and 3 must be the most efficient integral bases.
Which is more efficient? The ratio of the cost of a base 2 register to the cost of a base 3 register is

e(2) _ k- 2log(M+ 1) _ 2In(M+1)/(In2) _ 2In3
¢(3) k- 3loggM+1) 3n(M+1)/(In3) 3In2

= 1.056.

Thus, base 2 is more costly than base 3, but only by a small amount.

By the same analysis, base 2 is more costly than base e by a factor of about 1.062.

Chapter 13. Gray Code

Gray Code

Incrementing a Gray-Coded | nteger

Negabinary Gray Code

Brief History and Applications

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

13-1 Gray Code

Isit possible to cycle through all 2" combinations of n bits by changing only one bit at atime? The answer is
"yes," and thisisthe defining property of Gray codes. That is, a Gray code is an encoding of the integers such
that a Gray-coded integer and its successor differ in only one bit position. This concept can be generalized to
apply to any base, such as decimal, but here we will discuss only binary Gray codes.

Although there are many binary Gray codes, we will discuss only one: the "reflected binary Gray code." This
code iswhat is usually meant in the literature by the unqualified term "Gray code.” We will show, usualy
without proof, how to do some basic operations in this representation of integers, and we will show afew
surprising properties.

The reflected binary Gray code is constructed as follows. Start with the strings 0 and 1, representing the
integers 0 and 1.

0
I

Reflect this about a horizontal axis at the bottom of thelist, and place a 1 to the left of the new list entries, and a
0 to the left of the original list entries:

(0
0]
11

10

Thisisthe reflected binary Gray code for n = 2. To get the code for n = 3, reflect thisand attach aO or 1 as
before:

(000
(0]
011
010
110
111
101
100

From this construction, it is easy to see by induction on n that (1) each of the 2" bit combinations appears once
and only once in thelist, (2) only one bit changesin going from one list entry to the next, and (3) only one bit
changes when cycling around from the last entry to the first. Gray codes having this last property are called
"cyclic," and the reflected binary Gray code is necessarily cyclic.

If n> 2, there are non-cyclic codes that take on all 2" values once and only once. One such code is 000 001 011
010110100101 111.

Figure 13-1 shows, for n = 4, the integers encoded in ordinary binary and in Gray code. The formulas show
how to convert from one representation to the other at the bit-by-bit level (asit would be done in hardware).

Figure 13-1. 4-bit Gray code and conversion formulas.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch13fig01#ch13fig01

Binary Gray

abed efili

Q0o 0000 Gray from Binary Bmnary from Gray
ool (0 e=4q =

Q01 0011 f=a@b b=e@f

0011 0010 g=h@¢ ce=e®fPg
(100 0110 h=c@Dd d=e@fDedDh
(1ol 0111

0110 0101

0111 0100

1000 1100

100l 1101

1010 1111

1011 1110

1100 10110

101 1011

1110 1001

1111 10400

Asfor the number of Gray codes on n bits, notice that one still has a cyclic binary Gray code after rotating the
list (starting at any of the 2" positions and cycling around) or reordering the columns. Any combination of these
operations resultsin adistinct code. Therefore, there are at least 2" - n! cyclic binary Gray codes on n hits.

There are more than thisfor n :33.

The Gray code and binary representations have the following dual relationships, evident from the formulas
givenin Figure 13-1:

« Biti of aGray-coded integer isthe parity of biti and the bit to the left of i in the corresponding
binary integer (using O if there is no bit to the left of 1).

« Bitiof abinary integer isthe parity of al the bits at and to the left of positioni in the
corresponding Gray-coded integer.

Converting to Gray from binary can be done in only two instructions:

G—B®(BL1).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch13fig01#ch13fig01

The conversion to binary from Gray is harder. One method is given by

n—1
B~ & Gani.
i=1

We have already seen thisformulain " Computing the Parity of a Word" on page 74. As mentioned there, this
formula can be evaluated asillustrated below for n = 32.

=GN (G>>1);
N (B >> 2);
N (B >> 4);
N (B >> 8);
N (B >> 16);

0w wwWww
I
0w ww

Thus, in general it requires < |-IME‘E”Winstructions;.

Because it is so easy to convert from binary to Gray, it istrivial to generate successive Gray-coded integers:

for (i =0; I <n; i++) {
G=1 " (1 > 1);
out put G

http:// /?xmlid=0-201-91465-4/ch05lev1sec2#ch05lev2sec3

13-2 Incrementing a Gray-Coded Integer

The logic for incrementing a4-bit binary integer abcd can be expressed as follows, using Boolean algebra
notation:

d = d

e = c@d
h' = bh@cd
a = a® bed

Thus, one way to build a Gray-coded counter in hardware is to build a binary counter using the above logic, and
convert the outputs &', b, ¢', d' to Gray by forming the exclusive or of adjacent bits, as shown under "Gray from
Binary" in Figure 13-1.

A way that might be slightly better is described by the following formulas:

p=eceDbfpgdh

W =h@&p

g =g®hp
f = foghp
¢ = e®Dfohp

That is, the general caseis

Gl =G, ®(G,_Gua...Gop), n=2,

Because the parity p alternates between 0 and 1, a counter circuit might maintain p in a separate 1-bit register
and simply invert it on each count.

In software, the best way to find the successor G' of a Gray-coded integer G is probably simply to convert G to
binary, increment the binary word, and convert it back to Gray code. Another way that's interesting and almost

http:// /?xmlid=0-201-91465-4/ch13lev1sec1#ch13fig01

as good is to determine which bit to flip in G. The pattern goes like this, expressed as a word to be exclusive
or'dto G:

1 2141218121412116

The alert reader will recognize this as a mask that identifies the position of the leftmost bit that changes when
incrementing the integer O, 1, 2, 3, ..., corresponding to the positions in the above list. Thus, to increment a
Gray-coded integer G, the bit position to invert is given by the leftmost bit that changes when 1 is added to the
binary integer corresponding to G.

This leads to the following algorithms for incrementing a Gray-coded integer G. They both first convert G to
binary, whichisshown asi ndex(G) .

Figure 13-2 Incrementing a Gray-coded integer.

B = i ndex(GQ; B = i ndex(GQ;
B=B+ 1: M=~B & (B + 1);
G =B" (B> 1); G =G6G"M

A pencil-and-paper method of incrementing a Gray-coded integer is as follows:

Starting from the right, find the first place at which the parity of bits at and to the left of the position is even.
Invert the bit at this position.

Or, equivalently:
Let p be the parity of theword G. If p iseven, invert the rightmost bit.
If pisodd, invert the bit to the left of the rightmost 1-bit.

The latter rule is directly expressed in the Boolean equations given above.

13-3 Negabinary Gray Code

If you write the integersin order in base -2, and convert them using the "shift and exclusive or" that convertsto
Gray from straight binary, you get a Gray code. The 3-bit Gray code has indexes that range over the 3-bit base -
2 numbers, namely -2 to 5. Similarly, the 4-bit Gray code corresponding to 4-bit base -2 numbers has indexes
ranging from -10 to 5. It is not areflected Gray code, but it ailmost is. The 4-bit Gray code can be generated by
starting with 0 and 1, reflecting this about a horizontal axis at the top of the list, and then reflecting it about a
horizontal axis at the bottom of the list, and so on. It iscyclic.

To convert back to base -2 from this Gray code, the rules are of course the same asthey are for converting to
straight binary from ordinary reflected binary Gray code (because these operations are inverses, no matter what

the interpretation of the bit stringsis).

13-4 Brief History and Applications

Gray codes are named after Frank Gray, a physicist at Bell Telephone Laboratories who in the 1930's invented
the method we now use for broadcasting color TV in away that's compatible with the black-and-white
transmission and reception methods then in existence; that is, when the color signal is received by a black-and-
white set, the picture appears in shades of gray.

Martin Gardner [Gard] discusses applications of Gray codes involving the Chinese ring puzzle, the Tower of

Hanoi puzzle, and Hamiltonian paths through graphs that represent hypercubes. He also shows how to convert
from the decimal representation of an integer to a decimal Gray code representation.

Gray codes are used in position sensors. A strip of material is made with conducting and nonconducting areas,
corresponding to the 1'sand 0's of a Gray-coded integer. Each column has a conducting wire brush positioned
toread it out. If abrush is positioned on the dividing line between two of the quantized positions, so that its
reading is ambiguous, then it doesn't matter which way the ambiguity is resolved. There can be only one
ambiguous brush, and interpreting it asa 0 or 1 gives a position adjacent to the dividing line.

The strip can instead be a series of concentric circular tracks, giving arotational position sensor. For this
application, the Gray code must be cyclic. Such a sensor is shown in Figure 13-3, where the four dots represent
the brushes.

Figure 13-3. Rotational position sensor.

http:// /?xmlid=0-201-91465-4/biblio#bib15
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch13lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch13fig02#ch13fig02

Chapter 14. Hilbert's Curve

[1]
In 1890 Giuseppe Peano discovered aplanar curve with the rather surprising property that it is" space-
filling." The curve winds around the unit square and hits every point (X, y) at least once.

(I Recall that a curve is a continuous map from a one-dimensional space to an n-dimensional space.

Peano's curve is based on dividing each side of the unit square into three equal parts, which divides the square
into nine smaller squares. His curve traverses these nine squares in a certain order. Then, each of the nine small
squaresis similarly divided into nine still smaller squares, and the curve is modified to traverse all these
squares in a certain order. The curve can be described using fractions expressed in base 3; in fact, that's the way
Peano first described it.

In 1891 David Hilbert [Hil] discovered a variation of Peano's curve based on dividing each side of the unit

square into two equal parts, which divides the square into four smaller squares. Then, each of the four small
squaresis similarly divided into four still smaller squares, and so on. For each stage of thisdivision, Hilbert
gives acurve that traverses all the squares. Hilbert's curve, sometimes called the " Peano-Hilbert curve," isthe
limit curve of thisdivision process. It can be described using fractions expressed in base 2.

Figure 14-1 shows the first three steps in the sequence that leads to Hilbert's space-filling curve, asthey were
depicted in his 1891 paper.

Figure 14-1. First three curves in the sequence defining Hilbert's curve.

=

=
Eg .
il
11

LI
(-]
1]
|

I

I
—1 | L
M
) L
-+ |
| .|
-4 |
gy

1

Here, we do things alittle differently. We use the term "Hilbert curve" for any of the curves on the sequence
whose limit is the Hilbert space-filling curve. The "Hilbert curve of order n" means the nth curvein the
sequence. In Figure 14-1, the curves are of order 1, 2, and 3. We shift the curves down and to the left so that the
corners of the curves coincide with the intersections of the lines in the boxes above. Finally, we scale the size of
the order n curve up by afactor of 2", so that the coordinates of the corners of the curves are integers. Thus, our
order n Hilbert curve has corners at integers ranging from 0 to 2" - 1 in both x and y. We take the positive

direction along the curve to be from (x, y) = (0, 0) to (2" - 1, 0). On the next page are shown the "Hilbert
curves," in our terminology, of orders 1 through 6.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14footnote01#ch14footnote01
http:// /?xmlid=0-201-91465-4/biblio#bib28
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig01#ch14fig01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig01#ch14fig01

14-1 A Recursive Algorithm for Generating the Hilbert Curve

To see how to generate a Hilbert curve, examine the curvesin Figure 14-2. The order 1 curve goes up, right,
and down. The order 2 curve follows this overall pattern. First, it makes a U-shaped curve that goes up, in net
effect. Second, it takes a unit step up. Third, it takes a U-shaped curve, a step, and another U, al to the right.
Finally, it takes a step down, followed by a U that goes down, in net effect.

Figure 14-2. Hilbert curves of orders 1-6.

:] IL_II :I[S_Q %
o

s

e S i aasn ol

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig02#ch14fig02

0 32 63

The order 1 inverted U is converted into the order 2 Y -shaped curve.

We can regard the Hilbert curve of any order as a series of U-shaped curves of various orientations, each of
which, except for the last, is followed by a unit step in a certain direction. In transforming a Hilbert curve of
one order to the next, each U-shaped curve is transformed into a Y -shaped curve with the same general
orientation, and each unit step is transformed to a unit step in the same direction.

The transformation of the order 1 Hilbert curve (aU curve with a net direction to the right and a clockwise
rotational orientation) to the order 2 Hilbert curve goes as follows:

1. Draw aU that goes up and has a counterclockwise rotation.

2. Draw astep up.

3. Draw aU that goesto the right and has a clockwise rotation.
4. Draw astep to theright.

5. Draw aU that goesto the right and has a clockwise rotation.
6. Draw astep down.

7. Draw aU that goes down and has a counterclockwise rotation.

We can see by inspection that all U'sthat are oriented as the order 1 Hilbert curve are transformed in the same
way. A similar set of rules can be made for transforming U's with other orientations. These rules are embodied
in the recursive program shown in Figure 14-3 [V oor]. In this program, the orientation of aU curveis

characterized by two integers that specify the net linear and the rotational directions, encoded as follows:

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list01#ch14list01
http:// /?xmlid=0-201-91465-4/biblio#bib58

dir = 0: right

dir=1: up

dir = 2: left

dir = 3: down

rot = +1: clockwise

rot = -1: counterclockwise

Figure 14-3 Hilbert curve generator.

void step(int);

void hilbert(int dir, int rot, int order) {
I f (order == 0) return;

dir =dir + rot,;

hilbert(dir, -rot, order - 1);
step(dir);

dir =dir - rot;

hil bert(dir, rot, order - 1);

step(dir);

hil bert(dir, rot, order - 1);

dir =dir - rot;

step(dir);

hilbert(dir, -rot, order - 1);

Actualy, di r cantake on other values, but its congruency modulo 4 is what matters.

Figure 14-4 shows a driver program and function st ep that isused by program hi | ber t . Thisprogram is

given the order of aHilbert curve to construct, and it displays alist of line segments, giving for each the
direction of movement, the length along the curve to the end of the segment, and the coordinates of the end of
the segment. For example, for order 2 it displays

0 0000 00 00
0 0001 01 00
1 0010 01 01

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list02#ch14list02

2 0011 00 01
1 0100 00 10
1 0101 00 11
0 0110 01 11
-1 0111 01 10
0 1000 10 10
1 1001 10 11
0 1010 11 11
-1 1011 11 10
-1 1100 11 01
-2 1101 10 01
-1 1110 10 00
0 1111 11 00

Figure 14-4 Driver program for Hilbert curve generator.

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>

int x =-1, y = 0; /'l d obal variables.
int i = 0; /1 Dist. along curve.
i nt bl en; /1l Length to print.

void hilbert(int dir, int rot, int order);

voi d binary(unsigned k, int len, char *s) {
/* Converts the unsigned integer k to binary character
form Result is string s of length len. */

int i;

s[I en] 0;

for (i len - 1; 1 >=0; i--) {
if (k & 1) s[i]
el se s[i]
k = k > 1;

}

}
void step(int dir) {

char ii[33], xx[17], yy[17];

swtch(dir & 3) {
case 0: x = x + 1; break;

case 1. y =y + 1; break;
case 2. x = x - 1; break;
case 3. y =y - 1; break;
}
bi nary(i, 2*blen, ii);
bi nary(x, blen, xx);
bi nary(y, blen, yy);
printf("%d s % 9%\n", dir, ii, XX, VYyy);
=1 + 1; /'l Increnment distance.
}
int main(int argc, char *argv[]) {
i nt order;
order = atoi(argv[1]);
bl en = order;
step(0); /[l Print init. point.
hil bert(0, 1, order);
return O;

14-2 Coordinates from Distance along the Hilbert Curve

To find the (X, y) coordinates of a point located at a distance s along the order n Hilbert curve, observe that the
most significant two bits of the 2n-bit integer s determine which major quadrant the point isin. Thisis because
the Hilbert curve of any order follows the overall pattern of the order 1 curve. If the most significant two bits of
sare 00, the point is somewhere in the lower left quadrant, if O1 it isin the upper left quadrant, if 10 itisin the
upper right quadrant, and if 11 it isin the lower right quadrant. Thus, the most significant two bits of s
determine the most significant bits of the n-bit integers x and y, as follows:

Most significant two bitsof s Most significant bits of (X, y)
00 (0, 0)
01 0, 1)
10 (1,1)
11 (1,0

In any Hilbert curve, only four of the eight possible U-shapes occur. These are shown in Table 14-1 as graphics
and as maps from two bits of sto asingle bit of each of x and y.

Observe from Figure 14-2 that in all cases, the U-shape represented by map Al m’]'becomes, at the next

level of detail, a U-shape represented by maps B, A, A, or D, depending on whether the length traversed in the
first-mentioned map A is0, 1, 2, or 3, respectively. Similarly, a U-shape represented by map

B ﬁ) becomes, at the next level of detail, a U-shape represented by maps A, B, B, or C, depending on
whether the length traversed in the first-mentioned map B is 0, 1, 2, or 3, respectively.

These observations lead to the state transition table shown in Table 14-2, in which the states correspond to the
mappings shown in Table 14-1.

Table 14-1. The four possible mappings

A B C D

[l N (.

v

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table01#ch14table01
http:// /?xmlid=0-201-91465-4/ch14lev1sec1#ch14fig02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table01#ch14table01

00 ==*(0, 0) 00 ==*(0, 0) 00 ==¥(1, 1) 00 ==*(1, 1)
01 ==*(0, 1) 01 ==*(1, 0) 01 ==*(1, 0) 01 ==*(0, 1)
10 = (1, 1) 10 =*(1, 1) 10 ==*(0, 0) 10 ==*(0, 0)
11 ==*(1, 0) 11 ==*(0, 1) 11 ==(0, 1) 11 =3(10)

Table 14-2. State transition table for computing (X, Y) from S

If the current stateis | and the next (toright) two bitsof sare | then append to (x, y) | and enter state
A 00 (0, 0) B
A 01 (0, 1) A
A 10 (1, 1) A
A 11 (1, 0) D
B 00 (0, 0) A
B 01 (1, 0) B
B 10 (1, 1) B
B 11 (0, 1) C
C 00 (1,1 D
C 01 (1,0 C
C 10 (0, 0) C
C 11 (0, 1) B
D 00 1, 1) C

D 01 ©, 1) D

D 10 (0, 0) D

D 11 (1,0) A

To usethetable, start in state A. The integer s should be padded with leading zeros so that its length is 2n,
where n isthe order of the Hilbert curve. Scan the bits of sin pairs from left to right. The first row of Table 14-

2 meansthat if the current state is A and the currently scanned bits of s are 00, then output (0, 0) and enter state

B. Then, advance to the next two bits of s. Similarly, the second row means that if the current state is A and the
scanned bits are 01, then output (0, 1) and stay in state A.

The output bits are accumulated in left-to-right order. When the end of sis reached, the n-bit output quantities x
and y are defined.

As an example, suppose n = 3 and

s = 110100,

Because the process starts in state A and the initial bits scanned are 11, the process outputs (1, 0) and enters
state D (fourth row). Then, in state D and scanning 01, the process outputs (0, 1) and staysin state D. Lastly,
the process outputs (1, 1) and enters state C, although the state is now immaterial.

Thus, the output is (101, 011)—that is, x=5andy = 3.

A C program implementing these stepsis shown in Figure 14-5. In this program, the current state is represented
by an integer from 0 to 3 for states A through D, respectively. In the assignment to variable r ow, the current
state is concatenated with the next two bits of S, giving an integer from 0 to 15, which is the applicable row
number in Table 14-2. Variable r owis used to access integers (expressed in hexadecimal) that are used as bit
strings to represent the rightmost two columns of Table 14-2; that is, these accesses are in-register table
lookups. Left-to-right in the hexadecimal values corresponds to bottom-to-top in Table 14-2.

Figure 14-5 Program for computing (x, y) from s.

void hil _xy froms(unsigned s, int n, unsigned *xp,
unsi gned *yp) {

Int i1;

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list03#ch14list03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table02#ch14table02

unsi gned state, x, y, row

state = 0; [l Initialize.

X =y = 0;

for (i =2*n - 2; 1 >=0; i -=2) { /1 Do n tines.
row = 4*state | (s > 1) & 3; /'l Rowin table

X = (x << 1) | (0x936C >>row) &1
y = (y << 1) | (0x39C6 >>row) &1
state = (Ox3E6B94Cl1 >> 2*row) & 3; // New state.

}
*Xp = X; /'l Pass back
yp = y; Il results.

[L&S] give aquite different algorithm. Unlike the algorithm of Figure 14-5, it scans the bits of s from right to

left. It is based on the observation that one can map the least significant two bits of sto (X, y) based on the order
1 Hilbert curve, and then test the next two bits of sto the left. If they are 00, the values of x and y just computed
should be interchanged, which corresponds to reflecting the order 1 Hilbert curve about the linex =y. (Refer to
the curves of orders 1 and 2 shown in Figure 14-1 on page 241.) If these two bitsare 01 or 10, the values of x

and y are not changed. If they are 11, the values of x and y are interchanged and complemented. These same
rules apply as one progresses leftward along the bits of s. They are embodied in Table 14-3 and the code of

Figure 14-6. It is somewhat curious that the bits can be prepended to x and y first, and then the swap and
complement operations can be done, including these newly prepended bits; the results are the same.

Figure 14-6 Lam and Shapiro method for computing (x, y) from s.

void hil _xy froms(unsigned s, int n, unsigned *xp,
unsi gned *yp) {

int i, sa, sb;
unsi gned x, y, tenp;

for (I =0; i <2*n; I += 2) {
sa = (s > (i+l)) & 1; /[l Get bit i+1 of s.
sb = (s >1) & 1; /[l Get bit i of s.
If ((sa ™ sb) == 0) { /[l If sa,sb = 00 or 11,
tenp = Xx; /1l swap x and vy,
X = yM(-sa); /[l and if sa = 1,
y = temp”(-sa); /1 conpl enent them

http:// /?xmlid=0-201-91465-4/biblio#bib44
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list03#ch14list03
http:// /?xmlid=0-201-91465-4/ch14#ch14fig01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table03#ch14table03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list04#ch14list04

X = (x > 1) | (sa << 31); [// Prepend sa to x and
y =(y > 1) | ((sa ™ sb) << 31); /I (sa”sb) toy.

}
*Xp = x >> (32 - n); /'l R ght-adjust x and y
*yp =y >> (32 - n); /] and return themto

} /'l the caller.

In Figure 14-6, variables X and y are uninitialized, which might cause an error message from some compilers.
But the code functions correctly for whatever values X and y haveinitially.

The branch in the loop of Figure 14-6 can be avoided by doing the swap operation with the "three exclusive or"
trick given in Section 2-19 on page 38.

Table 14-3. Lam and Shapiro method for computing (X, Y) from S

If the next (to left) two bitsof sare then and prepend to (X, y)
00 Swap x and y (0, 0)
01 No change 0,1
10 No change (1,1
11 Swap and complement x and y (1,0)

Theif block can be replaced by the following code, where swap and cnpl are unsigned integers:

swap = (sa ~ sb) - 1; [// -1 if should swap, else O.

cnmpl = -(sa & sb); /[l -1 1f should conpl't, else O.
X = x Ny;

y =y " (x &swap) * cnpl

X =x "Ny,

However, thisis nine instructions, versus about two or six for the if block, so the branch cost would have to be
quite high for thisto be a good choice.

The "swap and complement” idea of [L& §] suggests alogic circuit for generating the Hilbert curve. The idea

behind the circuit described below is that as you trace along the path of an order n curve, you basically map
pairs of bitsof sto (x, y) according to map A of Table 14-1. Asthe trace enters various regions, however, the

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list04#ch14list04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list04#ch14list04
http:// /?xmlid=0-201-91465-4/ch02lev1sec19#ch02lev1sec19
http:// /?xmlid=0-201-91465-4/biblio#bib44
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table01#ch14table01

mapping output gets swapped, complemented, or both. The circuit of Figure 14-7 keeps track of the swap and
complement requirements of each stage, uses the appropriate mapping to map two bits of sto (x;, y;), and

generates the swap and complement signals for the next stage.

Figure 14-7. Logic circuit for incrementing (X, y) by one step along the Hilbert curve.

S2n-1 Pan-2 B2i+1 B2 g, 8y
) — — rra Sy, — — 5, P —_—
) — — R — —

-
P et

[

X = [BS80S C L
¥i = 152,855 B (5,5, NB G,
i = 51 BUE=5240)

Civ1 ®loysziy)

f i

e
|

Assume thereis aregister containing the path length s and circuits for incrementing it. Then, to find the next
point on the Hilbert curve, first increment s and then transform it as described in Table 14-4. Thisis aleft-to-

right process, which is abit of a problem because incrementing sis a right-to-left process. Thus, the time to

generate a new point on an order n Hilbert curveis proportional to 2n (for incrementing s) plus n (for
transforming sto (X, y)).

Figure 14-7 shows this computation as alogic circuit. In thisfigure, S denotes the swap signal and C denotes
the complement signal.

Table 14-4. Logic for computing (X, Y) from S

If the next (toright) two bitsof sare then append to (X, y) and set

00 (0,0)[*] SWap = swap

01 O, D[*] No change

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig07#ch14fig07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table04#ch14table04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig07#ch14fig07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14tn01#ch14tn01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14tn01#ch14tn01

10 (1, D[*] No change

11 (1,0[*] swap = swap, cmpl = cmpl

[*]

[l Possibly swapped and/or complemented

Thelogic circuit of Figure 14-7 suggests another way to compute (X, y) from s. Notice how the swap and
complement signals propagate from left to right through the n stages. This suggests that it may be possible to
use the parallel prefix operation to quickly (in log,n steps rather than n - 1) propagate the swap and
complement information to each stage, and then do some word-parallel logical operationsto compute x and y,
using the equations in Figure 14-7. The values of x and y are intermingled in the even and odd bit positions of a

word, so they have to be separated by the unshuffle operation (see page 107). This might seem a bit
complicated, and likely to pay off only for rather large values of n, but let us see how it goes.

A procedure for this operation is shown in Figure 14-8 [GLS1]. The procedure operates on fullword quantities,

so it first pads the input s on the left with '01' bits. This bit combination does not affect the swap and
complement quantities. Next, a quantity CS (complement-swap) is computed. Thisword is of the form

CSCS. .. Cs,whereeach Cc (asinglebit), if 1, means that the corresponding pair of bitsisto be
complemented, and each S means that the corresponding pair of bitsis to be swapped, following Table 14-3. In
other words, these two statements map each pair of bits of sasfollows:

S +1 2 CS
0 0 01
0 1 00
1 0 00
1 1 11

Figure 14-8 Parallel prefix method for computing (x, y) from s.

void hil _xy froms(unsigned s, int n, unsigned *xp,
unsi gned *yp) {

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14tn01#ch14tn01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14tn01#ch14tn01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14tn01#ch14tn01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig07#ch14fig07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig07#ch14fig07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list05#ch14list05
http:// /?xmlid=0-201-91465-4/biblio#bib19
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table03#ch14table03

unsi gned conp, swap, cs, t, sr;

S = s | (0x55555555 << 2*n); // Pad s on left with 01

sr = (s >> 1) & 0x55555555; // (no change) groups.
cs = ((s & 0x55555555) + sr) // Conpute conpl enent &
N 0x55555555; /1l swap info in two-Dbit
/'l groups.

/1 Parallel prefix xor op to propagate both conpl enent
/1 and swap info together fromleft to right (there is
/'l no step "cs "= c¢s >> 1", so in effect it conputes
/1 two independent parallel prefix operations on two
/'l interleaved sets of sixteen bits).

cs = c¢cs N (cs >> 2);

cs = cs N (cs >> 4);

cs = c¢cs N (cs >> 8);

cs = c¢cs M (cs >> 16);

swap = cs & 0x55555555; /| Separate the swap and
conp = (cs >> 1) & 0x55555555; // conplenent bits.

t = (s & swap) ™ conp; /'l Calculate x and y in
s =s Msr Mt N (L << 1); /1l the odd & even bit

/'l positions, resp.
s =s & ((1 << 2*n) - 1); /1 Clear out any junk

/1 on the left (unpad).

/1 Now "unshuffle" to separate the x and y bits.

t = (s N (s > 1)) & 0x22222222; s =s Mt ™ (t << 1);
t = (s N (s > 2)) & 0x0QCOAOC, s =s Mt N (t << 2);
t = (s ™ (s > 4)) & OxO0FOOOFO; s =s Mt "N (t << 4);
t = (s (s > 8)) & OxO0000FFQ0; s = s *t ™ (t << 8);
*Xp = s >> 16; /'l Assign the two hal ves
*yp = s & OxFFFF; /[l of t to x and vy.

Thisisthe quantity to which we want to apply the parallel prefix operation. PP-XOR isthe one to use, going
from left to right, because successive 1-bits meaning to complement or to swap have the same logical properties
as exclusive or: Two successive 1-bits cancel each other.

Both signals (complement and swap) are propagated in the same PP-X OR operation, each working with every

other bit of CS.

The next four assignment statements have the effect of trandlating each pair of bitsof S into (X, y) values, with
X being in the odd (leftmost) bit positions, and y being in the even bit positions. Although the logic may seem
obscure, it is not difficult to verify that each pair of bits of S istransformed by the logic of the first two
Boolean equations in Figure 14-7. (Suggestion: Consider separately how the even and odd bit positions are
transformed, using thefactthat t and sr are O in the odd positions.)

Therest of the procedure is self-explanatory. It executes in 66 basic RISC instructions (constant, branch-free),
versus about 19n + 10 (average) for the code of Figure 14-6 (based on compiled code; includes prologs and

epilogs, which are essentially nil). Thus, the parallel prefix method is faster for n =3,

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig07#ch14fig07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list04#ch14list04

14-3 Distance from Coordinates on the Hilbert Curve

Given the coordinates of a point on the Hilbert curve, the distance from the origin to the point can be calculated
by means of a state transition table similar to Table 14-2. Table 14-5 issuch atable.

Its interpretation is similar to that of the previous section. First, x and y should be padded with leading zeros so
that they are of length n bits, where n is the order of the Hilbert curve. Second, the bits of x and y are scanned
from left to right, and sis built up from left to right.

A C program implementing these steps is shown in Figure 14-9.
Figure 14-9 Program for computing s from (x, y).
unsigned hil _s from xy(unsigned x, unsigned y, int n) {

int i1;
unsi gned state, s, row,

state = 0; [l Initialize.
s = 0;

for (i =n- 1; i >=0; i--) {
row = 4*state | 2*((x >> i) & 1) | (y >1i) & 1;
S = (s << 2) | (Ox361E9CB4 >> 2*row) & 3;
state = (Ox8FE65831 >> 2*row) & 3;

}

return s;

[L&S] give an algorithm for computing s from (X, y) that is similar to their algorithm for going in the other
direction (Table 14-3). It isaleft-to-right algorithm, shown in Table 14-6 and Figure 14-10.

Figure 14-10 Lam and Shapiro method for computing s from (x, y).
unsigned hil s from xy(unsigned x, unsigned y, int n) {

int i, xi, yi;
unsi gned s, tenp;

s = 0; /1l Initialize.

http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table05#ch14table05
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list06#ch14list06
http:// /?xmlid=0-201-91465-4/biblio#bib44
http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table06#ch14table06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list07#ch14list07

for (i =n-1; 1 >=0; i--) {
Xi = (x >1) & 1, [l Get bit i of x.
yi = (y > i) & 1; [l Get bit i of y.
1f (yi == 0) {
tenp = Xx; /1 Swap x and y and,
X = yM(-xi); [1f xi =1,
y = tenmp™(-xi); /1 conpl enrent them
}
S = 4*s + 2*xi + (xi”yi); /'l Append two bits to s.
}
return s;

Table 14-5. State transition table for computing S from (X, Y)

If thecurrent stateis | and the next (to right) two bitsof (x,y) are | then appendtos | and enter state
A (0, 0) 00 B
A (0, 1) 01 A
A (1, 0) 11 D
A 1,1 10 A
B (0, 0) 00 A
B (©, 1) 11 C
B (1,0 01 B
B (1, 1) 10 B
C (0, 0) 10 C
C (0, 1) 11 B
C (1,0) 01 C

C 1,1 00 D
D (©, 0) 10 D
D ©, 1) 01 D
D (1,0) 11 A
D L1 00 C

Table 14-6. Lam and Shapiro method for computing S from (X, Y)

If the next (toright) two bitsof (x,y) are then and append tos
(0, 0) Swap x and y 00
0, 1) No change 01
(1,0 Swap and complement x and y 11
(1,1 No change 10

14-4 Incrementing the Coordinates on the Hilbert Curve

Given the (x, y) coordinates of a point on the order n Hilbert curve, how can one find the coordinates of the next
point? One way isto convert (x, y) to s, add 1 to s, and then convert the new value of s back to (x, y), using
algorithms given above.

A dightly (but not dramatically) better way is based on the fact that as one moves aong the Hilbert curve, at
each step either x or y, but not both, is either incremented or decremented (by 1). The algorithm to be described
scans the coordinate numbers from left to right to determine the type of U-curve that the rightmost two bits are
on. Then, based on the U-curve and the value of the rightmost two bits, it increments or decrements either x or y.

That's basicaly it, but there is a complication when the path is at the end of a U-curve (which happens once
every four steps). At this point, the direction to take is determined by the previous bits of x and y and by the
higher order U-curve with which these bits are associated. If that point is also at the end of its U-curve, then the
previous bits and the U-curve there determine the direction to take, and so on.

Table 14-7 describes this algorithm. In thistable, the A, B, C, and D denote the U-curves as shown in Table 14-
1 on page 246. To use thetable, first pad x and y with leading zeros so they are n bitslong, where n is the order
of the Hilbert curve. Start in state A and scan the bits of x and y from left to right. The first row of Table 14-7

means that if the current state is A and the currently scanned bits are (0, 0), then set avariable to indicate to
increment y, and enter state B. The other rows are interpreted similarly, with a suffix minus sign indicating to
decrement the associated coordinate. A dash in the third column means do not alter the variable that keeps track
of the coordinate changes.

After scanning the last (rightmost) bits of x and y, increment or decrement the appropriate coordinate as
indicated by the final value of the variable.

A C program implementing these stepsis shown in Figure 14-11. Variable dx isinitialized in such away that
if invoked many times, the algorithm cycles around, generating the same Hilbert curve over and over again.
(However, the step that connects one cycle to the next is not a unit step.)

Figure 14-11 Program for taking one step on the Hilbert curve.

void hil __inc_xy(unsigned *xp, unsigned *yp, int n) {

int i;
unsi gned x, y, state, dx, dy, row, dochange;

X = *Xp;

y = *yp;
state = 0; [l Initialize.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table07#ch14table07
http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table01
http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table07#ch14table07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14list08#ch14list08

dx
dy

f or

}

*Xp
*yp

(

((1 << n) - 1); [l Init. -(2**n - 1).

0;

=n-1;, i >=0; i--) { [/

Do n tines.

row = 4*state | 2*((x > i) & 1) | (y > 1) & 1;
dochange = (0xBDDB >> row) & 1;

| f

(dochange) {

dx = ((0x16451659 >> 2*row) & 3) -
dy = ((0x51166516 >> 2*row) & 3) -
}
state = (Ox8FE65831 >> 2*row) & 3;
= *Xp + dx;
= *yp + dy;

1;
1

Table 14-7. Taking one step on the Hilbert curve

If the current stateis|and the next (to right) two bitsof (x, y) are|then prepareto inc/dec|and enter state
A (0, 0) y+ B
A (0, 1) X+ A
A (1, 0) - D
A (1, 1) y- A
B (0, 0) X+ A
B 0, 1) — C
B (1, 0) v+ B
B 1,1 X- B
C (0,0) y+ C
C 0, 1) — B

C (1,0) X- C
C (1,1) y- D
D (0,0) X+ D
D (0, 1) y- D
D (1,0) — A
D (1, 1) X- C

Table 14-7 can readily be implemented in logic, as shown in Figure 14-12. In thisfigure, the variables have the
following meanings:

Figure 14-12. Logic circuit for incrementing (x, y) by one step along the Hilbert curve.

Kp-1 Fr-a X1 ¥i *o ¥o
0 —l Jj . Ti,3 — . T — — 1,
() =l — - e — W, — — -
[} = = L — > S, —
0 —m — Ciey = — —=
X=(8, vm+5, 080,
Y =055+ 5,00 8 Gy
'FJ' = I:"i'+I""I-';r"".',"-j+I‘:!{”rr'|"r:'+I';";FTF
W, =85, XY+5,, (X=Y)+ W, X¥
3;=58,,.,=Y
C, = CBIXY)

X

Biti of input x.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table07#ch14table07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig12#ch14fig12

Vi: Biti of inputy.

X, Y. andy; swapped and complemented, according to §.; and C,.;.
I If 1, increment; if O, decrement (by 1).

W. If 1, increment or decrement x; if O, increment or decrement y.

S If 1, swap x; and y;.

C: If 1, complement x; and y;.

Sand C together identify the "state" of Table 14-7, with (C, S = (0, 0), (0, 1), (1, 0), and (1, 1) denoting states
A, B, C, and D, respectively. The output signals are |5 and W, which tell, respectively, whether to increment or

decrement, and which variable to change. (In addition to the logic shown, an incrementer/decrementer circuit is
required, with MUX's to route either x or y to the incrementer/ decrementer, and a circuit to route the altered
value back to the register that holds x or y. Alternatively, two incrementer/decrementer circuits could be used.)

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14table07#ch14table07

14-5 Non-recursive Generating Algorithms

The algorithms of Tables 14-2 and 14-7 provide two non-recursive algorithms for generating the Hilbert curve

of any order. Either algorithm can be implemented in hardware without great difficulty. Hardware based on
Table 14-2 includes aregister holding s, which it increments for each step, and then convertsto (x, y)

coordinates. Hardware based on Table 14-7 would not have to include aregister for s, but the algorithm is more
complicated.

http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table02
http:// /?xmlid=0-201-91465-4/ch14lev1sec4#ch14table07
http:// /?xmlid=0-201-91465-4/ch14lev1sec2#ch14table02
http:// /?xmlid=0-201-91465-4/ch14lev1sec4#ch14table07

14-6 Other Space-Filling Curves

Aswas mentioned, Peano wasfirst, in 1890, to discover a space-filling curve. The many variations discovered
since then are often called "Peano curves." One interesting variation of Hilbert's curve was discovered by
Eliakim Hastings Moore in 1900. It is"cyclic" in the sense that the end point is one step away from the starting
point. The Peano curve of order 3, and the Moore curve of order 4, are shown in Figure 14-13. Moore's curve

has an irregularity in that the order 1 curve is up-right-down (|_"1') but this shape does not appear in the
higher-order curves. Except for this minor exception, the algorithms for dealing with Moore's curve are very
similar to those for the Hilbert curve.

Figure 14-13. Peano (left) and Moore (right) curves.

UL

e

The Hilbert curve has been generalized to arbitrary rectangles and to three and higher dimensions. The basic
building block for a 3-dimensional Hilbert curveis shown below. It hits all eight points of a 2x2x2 cube. These
and many other space-filling curves are discussed in [Sagan].

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch14lev1sec6&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch14fig13#ch14fig13
http:// /?xmlid=0-201-91465-4/biblio#bib55

14-7 Applications

Space-filling curves have applications in image processing: compression, halftoning, and textural analysis
[L&S]. Another application isto improve computer performance in ray tracing, a graphics-rendering technique.
Conventionally, a scene is scanned by projecting rays across the scene in ordinary raster scan line order (left to
right across the screen, and then top to bottom). When aray hits an object in the simulated scene's database, the
color and other properties of the object at that point are determined and the results are used to illuminate the
pixel through which the ray was sent. (Thisis an oversimplification, but it's adequate for our purposes.) One
problem is that the database is often large and the data on each object must be paged in and cast out as various
objects are hit by the scanning ray. When the ray scans across aline, it often hits many objects that were hit in
the previous scan, requiring them to be paged in again. Paging operations would be reduced if the scanning had
some kind of locality property. For example, it might be helpful to scan a quadrant of the screen completely
before going on to another quadrant.

The Hilbert curve seems to have the locality property we are seeking. It scans a quadrant compl etely before
scanning another, recursively, and also does not make a long jump when going from one quadrant to another.

Douglas Voorhies [V oor] has smulated what the paging behavior would likely be for the conventional uni-

directional scan line traversal, the Peano curve, and the Hilbert curve. His method is to scatter circles of agiven
size randomly on the screen. A scan path hitting a circle represents touching a new object, and paging it in. But
when a scan leaves acircle, it is presumed that the object's data remains in memory until the scan exitsacircle
of radius twice that of the "object” circle. Thus, if the scan leaves the object for just a short distance and then
returnsto it, it is assumed that no paging operation occurred. He repeats this experiment for many different
sizes of circles, on asimulated 1024 x 1024 screen.

Assume that entering an object circle and leaving its surrounding circle represent one paging operation. Then,
clearly the normal scan line causes D paging operationsin covering a (not too big) circle of diameter D pixels,
because each scan line that entersit leaves its outer circle. The interesting result of Voorhies's ssmulation is that
for the Peano curve, the number of paging operations to scan acircle is about 2.7 and, perhaps surprisingly, is
independent of the circle's diameter. For the Hilbert curve the figure is about 1.4, also independent of the
circle'sdiameter. Thus, the experiment suggests that the Hilbert curve is superior to the Peano curve, and vastly
superior to the normal scan line path, in reducing paging operations. (The result that the page count is
independent of the circles diametersis probably an artifact of the outer circle's being proportional in size to the
object circle.)

http:// /?xmlid=0-201-91465-4/biblio#bib44
http:// /?xmlid=0-201-91465-4/biblio#bib58

Chapter 15. Floating-Point

God created the integers, all elseisthe work of man.
—L eopold Kronecker

Operating on floating-point numbers with integer arithmetic and logical instructionsis often a messy
proposition. Thisis particularly true for the rules and formats of the IEEE Standard for Binary Floating-Point
Arithmetic, IEEE Std. 754-1985, commonly known as"|EEE arithmetic." It has the NaN (not a number) and
infinities, which are special casesfor ailmost all operations. It has plus and minus zero, which must compare
equal to one another. It has a fourth comparison result, “unordered.” The most significant bit of the fraction is
not explicitly present in "normal” numbers, but it isin "denormalized" or "subnormal” numbers. The fractionis
in signed-true form and the exponent isin biased form, whereas integers are now almost universally in two's-
complement form. There are of course reasons for all this, but it resultsin programs that are full of compares
and branches, and that present a challenge to implement efficiently.

We assume the reader has some familiarity with the |EEE standard, and thus summarize it here only very
briefly.

15-1 IEEE Format

We will restrict our attention to the single and double formats (32- and 64-bit) described in IEEE 754. The
standard also describes "single extended" and "double extended" formats, but they are only loosely described
because the details are implementation-dependent (e.g., the exponent width is unspecified in the standard). The
single and double formats are shown below.

Single format Double format
e i ¥ ¢ !
1 & 23 111 52

The sign bit sisencoded as O for plus, 1 for minus. The biased exponent e and fraction f are magnitudes with
their most significant bits on the left. The floating-point value represented is encoded as shown on the next
page.

Single format Double format
& f valie ¢ f verlite
0 0 | =0 0 0 | +0
0 #0 | 2750, 0 #0 | 22700
w254 | - | 223710 L2046 | — | £2¢7%%%1,0
255 0 | Zoo 2047 0 | fee
255 #={) | NaN 2047 =0 | NaN

As an example, consider encoding the number Ttin single format. In binary [Knul],

m= LLOOTOOI0O0OT] 1101 0110 1010 1000 1000 1000 0101 1010 0011 0000 10....

Thisisin the range of the "normalized" numbers shown in the third row of the table above. The most

significant 1 in Ttis dropped, asthe leading 1 is not stored in the encoding of normalized numbers. The
exponent e - 127 should be 1, to get the binary point in the right place, and hence e = 128. Thus, the
representation is

0 10000000 10010010000111111011011

or, in hexadecimal,

http:// /?xmlid=0-201-91465-4/biblio#bib38

40490FDB,

where we have rounded the fraction to the nearest representable number.

Numbers with 1 Se <254 are called "normalized numbers.” These arein "normal” form, meaning that their
most significant bit is not explicitly stored. Nonzero numbers with e = 0 are called "denormalized numbers," or
simply "denorms." Their most significant bit is explicitly stored. This scheme is sometimes called "gradual
underflow." Some extreme values in the various ranges of floating-point number are shown in Table 15-1. In
thistable "Max integer" means the largest integer such that all integers less than or equal to it, in absolute
value, are representable exactly; the next integer is rounded.

For normalized numbers, one unit in the last position (ulp) has arelative value ranging from 1/224 to 1/233
(about 5.96 x 108 to 1.19 x 10°7) for single format, and from 1/2°3 to 1/252 (about 1.11 x 10-16 to0 2.22 x 10-16)
for double format. The maximum "relative error," for round to nearest mode, is half of those figures.

Therange of integersthat is represented exactly is from -224 to +224 (-16,777,216 to +16,777,216) for single
format, and from -253 to =253 (-9,007,119,254,740,992 to +9,007,199,254,740,992) for double format. Of
course, certain integers outside these ranges, such aslarger powers of 2, can be represented exactly; the ranges
cited are the maximal ranges for which all integers are represented exactly.

Table 15-1. Extreme Values

Single Precision

Hex Exact Value Approximate Value

Smallest denorm 0000 0001 2-149 1.401x1045

Largest denorm 00/F FFFF 2-126(1 - 2-23) 1.175x10-38

Smallest normalized 0080 0000 2-126 1.175x10-38

1.0 3F80 0000 1 1

Max integer 4B80 0000 024 1.677x107

Largest normalized (F/F FFFF 21281 - 2-24) 3.403x1038

oo /F80 0000 ES oo

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch15lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch15table01#ch15table01

Double Precision
Smallest denorm 0 0001 2-1074 4.941x10-324
Largest denorm O00OF F 2-1022(1 - 2-52) 2 225x10-308
Smallest normalized 0010 O 2-1022 2 295x10-308
1.0 3FFO O 1 1
Max integer 4340 0 253 9.007x1015
Largest normalized (FEF F 21024(1 - 2-53) 1.798x10308
o0 /FFO O o0 o0

One might want to change division by a constant to multiplication by the reciprocal. This can be done with
complete (IEEE) accuracy only for numbers whose reciprocals are represented exactly. These are the powers of
2 from 2-127 to 2127 for single format, and from 2-1023 tg 21023 for double format. The numbers 2-127 and 2-1023
are denormalized numbers, which are best avoided on machines that implement operations on denormalized
numbers inefficiently.

15-2 Comparing Floating-Point Numbers Using Integer Operations

One of the features of the |EEE encodings is that non-NAN values are properly ordered if treated as signed
magnitude integers.

To program afloating-point comparison using integer operations, it is necessary that the "unordered" result not
be needed. In |EEE 754, the unordered result occurs when one or both comparands are NaNs. The methods
below treat NaNs asif they were numbers greater in magnitude than infinity.

The comparisons are a'so much simpler if -0.0 may be treated as strictly less than +0.0 (which isnot in
accordance with |EEE 754). Assuming thisis acceptable, the comparisons may be done as shown below, where

i ! i
<' =*and =denote floating-point comparisons, and the :wmbol isused as areminder that these formulas

do not treat £0.0 quite right.

alb=(a=b)
alb=(az0&a<b) | (a<0&azh)

azb=(az0&a<h) |l (a<0&aih)

If -0.0 must be treated as equal to +0.0, there does not seem to be any very slick way to do it, but the following
formulas, which follow more or less obviously from the above, are possibilities.
alb=(a=0|{(-a=a&-b=>b)

=(a=5) | ({a | b)=0xB30000000)

=(a=5) 1 ({(a | b)& OXTFFFFFFF) = 0)
ﬂébE{[ﬂEﬂ&ﬂ{b} |l {fa<0&a=b))& ((a | b)=0xB0000000)

ﬂé.ﬁ:{ﬂ?“&[ﬂﬂb} | {fa<0&a=b) | ((a | b)=0x80000000)

In some applications, it might be more efficient to first transform the numbers in some way, and then do a
floating-point comparison with a single fixed-point comparison instruction. For example, in sorting n numbers,
the transformation would be done only once to each number, whereas a comparison must be done at least

|-H]ﬂgz”-ltimes (in the minimax sense).

Table 15-2 gives four such transformations. For those in the left column, -0.0 compares equal to +0.0, and for

those in the right column, -0.0 compares less than +0.0. In all cases, the sense of the comparison is not atered
by the transformation. Variable n issigned, t isunsigned, and ¢ may be either signed or unsigned.

The last row shows branch-free code that can be implemented on our basic RISC in four instructions for the left
column, and three for the right column (these four or three instructions must be executed for each comparand).

http:// /?xmlid=0-201-91465-4/ch15lev1sec3#ch15table02

15-3 The Distribution of Leading Digits

When IBM introduced the System/360 computer in 1964, numerical analysts were horrified at the loss of
precision of single-precision arithmetic. The previous IBM computer line, the 704 - 709 - 7090 family, had a 36-
bit word. For single-precision floating-point, the format consisted of a 9-bit sign and exponent field, followed

by a 27-bit fraction in binary. The most significant fraction bit was explicitly included (in "normal™ numbers),
SO quantities were represented with a precision of 27 bits.

Table 15-2. Preconditioning Floating-Point Numbers for Integer Comparisons

-0.0=+0.0 (IEEE) -0.0 < +0.0 (non-1EEE)
if (n >= 0) n = n+0x80000000; If (n >= 0) n = n+0Ox80000000;
el se n = -n; Use unsi gned el se n = ~n; Use unsi gned
conpari son. conpari son.
C = OX7FFFFFFF; if (n < 0) n = (n |c = OX7FFFFFFF; if (n < 0) n =n
N c) + 1; Use signed conparison. "N c; Use signed conpari son.

c = 0x80000000; if (n<0) n=c¢c c = OX7FFFFFFF; if (n < 0) n =¢c¢
- n; Use signed conpari son. - n; Use signed conpari son.

t =n>>31n=(n"(t >1)) - =
t; Use signed conparison. n A

—

(unsigned) (n>>30) >> 1; n =
t; Use signed conparison.

The $/360 has a 32-bit word. For single-precision, IBM chose to have an 8-bit sign and exponent field followed
by a 24-bit fraction. This drop from 27 to 24 bits was bad enough, but it gets worse. To keep the exponent
range large, a unit in the 7-bit exponent of the S/360 format represents afactor of 16. Thus, the fractionisin
base 16, and this format came to be called "hexadecimal” floating-point. The leading digit can be any number
from 1 to 15 (binary 0001 to 1111). Numbers with leading digit 1 have only 21 bits of precision (because of the
three leading 0's), but they should constitute only 1/15 (6.7%) of all numbers.

No, it'sworse than that! There was aflurry of activity to show, both analytically and empirically, that leading
digits are not uniformly distributed. In hexadecimal floating-point, one would expect 25% of the numbersto
have leading digit 1, and hence only 21 bits of precision.

Let us consider the distribution of leading digitsin decimal. Suppose you have alarge set of numbers with
units, such as length, volume, mass, speed, and so on, expressed in "scientific" notation (e.g., 6.022 x 1023). If
the leading digit of alarge number of such numbers has awell-defined distribution function, then it must be

independent of the units—whether inches or centimeters, pounds or kilograms, and so on. Thus, if you multiply
al the numbersin the set by any constant, the distribution of leading digits should be unchanged. For example,
considering multiplying by 2, we conclude that the number of numbers with leading digit 1 (those from 1.0 to
1.999... times 10 to some power) must equal the number of numbers with leading digit 2 or 3 (those from 2.0
t0 3.999... times 10 to some power), because it shouldn't matter if our unit of length isinches or half inches, or
our unit of massis kilograms or half kilograms, and so on.

Let f(x), for 1 Sx< 10, be the probability density function for the leading digits of the set of numbers with
units. f(x) has the property that

rr,l"{ Xy

is the proportion of numbers that have leading digits ranging from a to b. Referring to the figure below, for a
small increment Ax, in X, f must satisfy

F(1) - Ax = flx) - xAx

_ﬂll L

== -

-
= I
+
=
=
-

because f(1) - Ax is, approximately, the proportion of numbers ranging from 1 to 1 + Ax (ignoring a multiplier
of apower of 10), and f(x) - XAx is the approximate proportion of numbers ranging from x to x + xAx. Because
the latter set isthe first set multiplied by X, their proportions must be equal. Thus, the probability density
function isasimple inverse relationship,

flxy = fil)/x.

Because the area under the curve from x = 1 to x = 10 must be 1 (all numbers have leading digits from 1.000...

t09.999...), it iseasily shown that

Jily = 1/In 10,

The proportion of numbers with leading digitsin therange ato b, with 1 <aSb< 10, is

]

j el - Inx _ Ink/a
e xln 10]n]ﬂﬁ Inl0

b b

= log,-.
Fe

Thus, in decimal, the proportion of numbers with leading digit 1 islog;o(2/1) =0.30103, and the proportion of
numbers with leading digit 9 islog,o(10/9) ~=0.0458.

For base 16, the proportion of numbers with leading digitsin therange a to b, with 1 <aSb< 16, issimilarly
derived to be log,g(b/a). Hence the proportion of numbers with leading digit 1 islog,g(2/1) = Vlog, 16 = 0.25.

15-4 Table of Miscellaneous Values

Table 15-3 shows the | EEE representation of miscellaneous values that may be of interest. The values that are
not exact are rounded to the nearest representable value.

Table 15-3. Miscellaneous Values

Decimal Single Format (Hex) Double Format (Hex)
-0 FF80 0000 FFFO 0000 0000 0000
-2.0 CO00 0000 CO00 0000 0000 0000
-1.0 BFS8O 0000 BFFO 0000 0000 0000
-0.5 BFOO 0000 BFEO 0000 0000 0000
-0.0 8000 0000 8000 0000 0000 0000
+0.0 0000 0000 0000 0000 0000 0000
Smallest positive denorm 0000 0001 0000 0000 0000 0001
Largest denorm 007F FFFF O00F FFFF FFFF FFFF
L east positive normalized 0080 0000 0010 0000 0000 0000
17180 (0.01745...) 3CBE FA35 3F91 DF46 A252 9D39
0.1 3DCC CCCD 3FB9 9999 9999 999A
logyg 2 (0.3010...) 3E9A 209B 3FD3 4413 509F 79FF
1/e (0.3678...) 3EBC 5AB2 3FD/ 8B56 362C EF38
1/In 10 (0.4342...) 3EDE 5BD9 3FDB CB/B 1526 E50E

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch15lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch15table03#ch15table03

05 3F00 0000 3FE0 0000 0000 0000
In2 (0.693L...) 3F31 7218 3FE6 2E42 FEFA 39EF
173 (0707, 3F35 04F3 3FE6 AO9E 667F 3BCD
Vin3(0.9102...) 3F69 0570 3FED 20AE 03BC CI53
10 3F80 0000 3FF0 0000 0000 0000
In3(1.0986...) 3F8C 9F54 3FFI 93EA 7AAD 030B
5 (1414 3FB5 04F3 3FF6 AO9E 667F 3BCD
Vin2 (L442...) 3FBS AA3B 3FF7 1547 652B 82FE
B a7 3FDD B3D? 3FFB B67A ES58 4CAA
2.0 4000 0000 4000 0000 0000 0000
In10 (2.302...) 4013 5D8E 4002 6BBI BBB5 5516
e(2718...) 402D F854 4005 BFOA 8BIZ4 5769
3.0 4040 0000 4008 0000 0000 0000
m(3.141...) 4049 OFDB 4009 21IFB 5444 2DI8
J10 G162 404A 62C2 4009 4C58 3ADA 5B53
log, 10 (3.321...) 4054 9ATS 400A 934F 0979 A371
4.0 4080 0000 4010 0000 0000 0000
5.0 40A0 0000 4014 0000 0000 0000

6.0 40C0 0000 4018 0000 0000 0000
211(6.283...) 40C9 OFDB 4019 21FB 5444 2D18
7.0 40EO 0000 401C 0000 0000 0000
8.0 4100 0000 4020 0000 0000 0000
9.0 4110 0000 4022 0000 0000 0000
10.0 4120 0000 4024 0000 0000 0000
11.0 4130 0000 4026 0000 0000 0000
12.0 4140 0000 4028 0000 0000 0000
13.0 4150 0000 402A 0000 0000 0000
14.0 4160 0000 402C 0000 0000 0000
15.0 4170 0000 4A02E 0000 0000 0000
16.0 4180 0000 4030 0000 0000 0000
180/t (57.295...) 4265 2EE1 404C ASDC 1A63 C1FS8
223 .1 AAFF FFFE 415F FFFF COO0 0000
223 4B00 0000 4160 0000 0000 0000
224 _ 1 AB/+F FFFF 416F FFFF EOOO 0000
224 4AB80 0000 4170 0000 0000 0000
231 _ 1 4AF00 0000 A1DF FFFF FFCO 0000
231 4F00 0000 ATEO0 0000 0000 0000

2321 ZF80 0000 A1EF FFFF FFEO 0000
232 4F80 0000 ZIF0 0000 0000 0000
252 5980 0000 4330 0000 0000 0000
263 5F00 0000 Z3E0 0000 0000 0000
264 5F80 0000 Z3F0 0000 0000 0000
Largest normalized 7F7F FFFF 7FEF FFFF FFFF FFFF
== 7F80 0000 7FF0 0000 0000 0000
"Smallest” SNaN 7F80 0001 7FF0 0000 0000 0001
"Largest” SNaN 7FBF FFFF 7FF7 FFFF FFFF FFFF
"Smallest” QNaN 7FCO 0000 7FF8 0000 0000 0000
"Largest” ONaN 7FFF FFFF 7FFF FFFF FFFF FFFF

|EEE 754 does not specify how the signaling and quiet NaNs are distinguished. Table 15-3 uses the convention
employed by PowerPC, the AMD 29050, the Intel x86 and 1860, and the Fairchild Clipper: The most
significant fraction bit is O for signaling and 1 for quiet NaN's. The Compag Alpha, HP PA-RISC, and MIPS
computers use the same bit to make the distinction, but in the opposite sense (0 = quiet, 1 = signaling).

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch15lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch15table03#ch15table03

Chapter 16. Formulas for Primes

I ntroduction

Willans's Formulas

Wormell's Formula

Formulas for Other Difficult Functions

http:// /?xmlid=0-201-91465-4/22961533
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec3&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1
http:// /?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1

16-1 Introduction

Like many young students, | once became fascinated with prime numbers, and tried to find a formula for them.
| didn't know exactly what operations would be considered valid in a"formula," or exactly what function | was
looking for—aformulafor the nth prime in terms of n, or in terms of the previous prime(s), or aformula that
produces primes but not all of them, and so on. Nevertheless, in spite of these ambiguities, | would like to
discuss alittle of what is known about this problem. We will seethat (a) there are formulas for primes, and (b)
none of them are very satisfying.

Much of this subject relates to the present work in that it deals with formulas similar to those of some of our
programming tricks, albeit in the domain of real number arithmetic rather than "computer arithmetic." But let
usfirst review afew highlights from the history of this subject.

In 1640, Fermat conjectured that the formula

always produces a prime, and numbers of this form have come to be called "Fermat numbers." It is true that F,
isprime for n ranging from O to 4, but Euler found in 1732 that

Fo=22+1 = 641 -6700417.

(We have seen these factors before in connection with dividing by a constant on a 32-bit machine). Then, F.
Landry showed in 1880 that

Fo=2"+1 = 274177 - 67280421310721.

V]

Fp, is now known to be composite for many larger values of n, such asall n from 7 to 16 inclusive. For no value

[1]
of n> 4 isit known to be prime [H& W]. So much for rash conjectures.

(1] However, this is the only conjecture of Fermat known to be wrong [Wells].

http:// /?xmlid=0-201-91465-4/biblio#bib33
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec1&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16footnote01#ch16footnote01
http:// /?xmlid=0-201-91465-4/biblio#bib61

Incidentally, why would Fermat be led to the double exponential? He knew that if m has an odd factor other
than 1, then 2M + 1 is composite. For if m = ab with b odd and not equal to 1, then

2““4“ 1 = {E.-.'+ I}{Er.ll_h--- |]_E.-.-|_h--3]_+ E.-r-:h L) o+ 1:]

Knowing this, he must have wondered about 2™ + 1 with m not containing any odd factors (other than 1)—that
is, m=2n. He tried afew values of n and found that 2" + 1 seemed to be prime.

Certainly everyone would agree that a polynomial qualifies asa"formula." One rather amazing polynomia was
discovered by Leonhard Euler in 1772. He found that

finy = n*+n+41

is prime-valued for every n from O to 39. His result can be extended. Because

fl—n) = nt=n+41 = fin-1),

f(-n) is prime-valued for every n from 1 to 40; that is, f(n) is prime-valued for every n from -1 to -40. Therefore,

fin=40) = (n=40) "+ (n-40)+ 41 = n* =790 + 160]

isprime-valued for every n from 0 to 79. (However, it islacking in aesthetic appeal because it is nonmonotonic
and it repeats; that is, forn=0, 1, ..., 79, n2 - 79n + 1601 = 1601, 1523, 1447, ..., 43, 41, 41, 43, ..., 1447,
1523, 1601.)

In spite of this success, it is now known that there is no polynomial f(n) that produces a prime for every n (aside
from constant polynomials such asf(n) = 5). In fact, any nontrivial "polynomial in exponentials' is composite
infinitely often. More precisely, as stated in [H& W],

Theorem. If f(n) = P(n, 2n, 3, ..., k) isa polynomial in its arguments, with integral coefficients, and f(n) ==
sewhen n ==* ==, then f(n) is composite for an infinity of values of n.

http:// /?xmlid=0-201-91465-4/biblio#bib33

Thus, aformulasuch asn? - 2" + 2n3 + 2n + 5 must produce an infinite number of composites. On the other

hand, the theorem says nothing about formulas containing terms such as 2, nn, and n!.

A formulafor the nth prime in terms of n can be obtained by using the floor function and a magic number

¢ = 0.20300500070001 1000013....

The number ais, in decimal, the first prime written in the first place after the decimal point, the second prime
written in the next two places, the third prime written in the next three places, and so on. Thereis always room
for the n th prime, because p,, < 10". We will not prove this, except to point out that it is known that there is

always a prime between n and 2n (for n :"—"2), and hence certainly at least one between n and 10n, from which it
followsthat p, < 10". The formulafor the nth primeis

nten ne-n
P = {Iﬂ : !’lJ-lﬂ”[lﬂ 2 HJ,

where we have used therelation 1 + 2+ 3+ ... + n= (n? + n)/2. For example,

py = 106 | - 103 105 |
= 203005 - 203000
5.

Thisisapretty cheap trick, asit requires knowledge of the result to define a. The formulawould be interesting
if there were some way to define a independently of the primes, but no one knows of such a definition.

Obviousdly, this technique can be used to obtain aformulafor many sequences, but it begs the question.

16-2 Willans's Formulas

C. P. Willans gives the following formula for the nth prime [Will]:

m= | X

. N . . =10
p, =1+ ¥ ",‘JH[¥ Lcns—ﬂ:w” :
x=1

The derivation starts from Wilson's theorem, which statesthat pis prime or 1 if and only if (p - 1)! =-1(mod
p). Thus,

(x— 1)+ 1
N

isan integer for x prime or x = 1 and is fractional for all composite x. Hence
Equation 1

Flx) = _cm?nwj — I, xprimeorl,
+ 0, x composite.

[2]
Thus, if T{m) denotes the number of primes Em,

21 our apologies for the two uses of 1tin close proximity, but it's standard notation and shouldn't cause any difficulty.

Equation 2

nm) = -1+ 3 F(x).

r=1

http:// /?xmlid=0-201-91465-4/biblio#bib62
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16footnote02#ch16footnote02

Observe that 1(p,,) = n, and furthermore,

wm)y<n, for m<p, and

wlm)zn, for mz2p,.

Therefore, the number of values of mfrom 1 to e=for whichist(m) <nisp,- 1. That is,

Equation 3

Py = 1 + i (i) <),

m=1

where the summand is a " predicate expression” (0/1-valued).

Because we have aformulafor 1(m), Equation (3) constitutes aformulafor the nth prime as a function of n.

But it has two features that might be considered unacceptable: an infinite summation and the use of a " predicate
expression,” which is not in standard mathematical usage.

It has been proved that for n =1 thereis at least one prime between n and 2n. Therefore, the number of primes

<onisat least n—that is, T((2") =n. Thus, the predicate T(m) < nisOfor m :32”, so the upper limit of the
summation above can be replaced with 2.

Willans has arather clever substitute for the predicate expression. Let

LT(x, v) = _J—-‘—J for x=0,1,2,.... v=1,2,....
l +x

Then, if x<y, 1 Sy/(1+x) Sy, so | SH¥/ (1 +x1)= Wy < 2. Furthermore, if x 2y, then 0<y/(1+X) < 1,
s 0<y/(I+x) <1, so 0=y (1 +x)< I Applying the floor function, we have

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq03#ch16eq03

LT(x, y) = I, for x<y,
), for x=v,

That is, LT(X, y) isthe predicate x <y (for x and y in the given ranges).

Substituting, Equation (3) can be written

p, =1+ _Z LT(r(rm), 1)

i o= |

1+ S /L
+,,,E='|{ I+5n:{m}J

Further substituting Equation (2) for T(m) in terms of F(x), and Equation (1) for F(x), gives the formula shown
at the beginning of this section.

Second Formula

Willans then gives another formula:

il

T

p, = S mE(m)| 27w -l |,

= |

Here, F and ttare the functions used in hisfirst formula. Thus, mF(m) = mif misprime or 1, and O otherwise.
The third factor in the summand is the predicate Ti{(m) =n. The summand is 0 except for one term, which isthe
nth prime. For example,

py = 110+ 2104 3-1-0 + 4-0:0 + 5-1-0 + 600 + 7-1-1
+ 801 +9:0-1 + 10:0:1 + 11-1-0 + ... + 16:0:0
7.

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq03#ch16eq03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq02#ch16eq02
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq01#ch16eq01

Third Formula

[3]
Willans goes on to present another formulafor the nth prime that does not use any "nonanalytic® functions
such as floor and absolute value. He starts by noting that for x =2, 3, ..., the function

Bl This is my terminology, not Willans's.

] -
({x |}:}3 _ an mteger + ; when x is prime,

A . . .
| llllﬂgﬂl', when x 15 L'U[Hr.lu:ﬂll.l orl.

Thefirst part follows from

(DY _ (-D+ D) -x-D1-1) 1
& " ! "

and x divides (x - 1)! + 1, by Wilson's theorem. Thus, the predicate "x is prime," for x 22is given by

((x=1))°

sinemas——
Y

H(x) =

T
LIn==
X

From thisit follows that

m

mm) = % Hx), for m = 2,3,

r=2

This cannot be converted to aformulafor p,, by the methods used in the first two formulas, because they use the

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16footnote03#ch16footnote03

[4]
floor function. Instead, Willans suggests the following formula ~ for the predicate x <y, for x, y =1

“I\We have slightly simplified his formula.

LTix, yv) = ﬁill(g : 2"], where

y=1

e= [T (x=1i).
P=0

Thus, if x<y,e=x(x-1)...(0)(-1)...(x- (y-1)) =0sothat LT(X, y) =sin(1v2) = 1. If x :_:"y, the product does

not include 0, so e :31, so that LT(x, y) = sin((172) - (an even number)) = 0.

Finally, asin the first of Willans's formulas,

4

p, =2+ . LT{m(m), 1),

.
-

il

Written out in full, thisisthe rather formidable

' T TN

i n=| m 1i|.1ﬂu:l_ A
K

[N 22—
an T fmD| zm2 sin==
= 7 -.72 .
P, = 2+ E_ﬁam 52
mm 2 =
Y A

Fourth Formula

Willans then gives aformulafor p, 1 in terms of p,;:

2,

-pn'l+| = I+Pr|+ E]_I-ﬂ:ﬂ,lr +.Ir.}1-

i=1j=1

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec2&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16footnote04#ch16footnote04

where f(x) isthe predicate "x is composite,” for x :32; that is,

flx) = \-L‘HHEH MJ

X

Alternatively, one could use f(x) = 1 - H(X), to keep the formula free of floor functions.

As an example of thisformula, let p, = 7. Then,

L+ 7 +£(8) +F(B)(9) +f(8)(9)f(10)
+ A0 IL) + ... + f(8)(9)...f(14)

= 14+7+1+1-1+011-1 410104 ... 101010
.

Pf|+l

16-3 Wormell's Formula

C. P. Wormell [Wor] improves on Willans's formulas by avoiding both trigonometric functions and the floor
function. Wormell's formula can in principle be evaluated by a simple computer program that uses only integer

arithmetic. The derivation does not use Wilson's theorem. Wormell starts with, for x :32,

X

B(x) = T T (x—ab)? =

a=2h=2 0, if x is composite.

a positive integer, if x is prime,

Thus, the number of primes <m isgiven by

[T}] + { I :I:rIII'I.I

mm) = Y 3

=2

because the summand is the predicate "x is prime."
Observe that, for n :31, a :30,

i . 0, when a < n,
n (1l —r4+a)- =

r=1 a positive integer, when a 2 n.

Repeating atrick above, the predicatea<nis

[

]._.III —reult
- (=¥

3

(et =n) = !

Because

http:// /?xmlid=0-201-91465-4/biblio#bib63

p, = 2+ z () < m),

in=2

we have, upon factoring constants out of summations,

;
iy o
) t —ah)
fm=1F | . am? hw?
II|_,+ = "iE —fjia=2 el
i -
*

As promised, Wormell's formula does not use trigonometric functions. However, as he points out, if the powers
of -1 were expanded using (-1)" = costm, they would reappear.

16-4 Formulas for Other Difficult Functions

Let us have acloser look at what Willans and Wormell have done. We postulate the rules below as defining
what we mean by the class of functions that can be represented by "formulas,” which we will call "formula

functions." Here, X is shorthand for x4, Xy, ..., X, for any n = 1. The domain of valuesisthe integers... -2, -1,
0,12 ...

1. Theconstants...-1,0, 1, ... are formulafunctions.

2. Theprojection functionsf(x) = x;, for 1 <i En, are formulafunctions.

3. Theexpressionsx +Yy, X -y, and xy are formulafunctions, if xand y are.

4. Theclassof formulafunctionsis closed under composition (substitution). That is, f(g1(X), 9x(X),
...y Om(x")) isaformulafunctionif f and g; are, fori =1, ..., m.

5. Bounded sums and products, written

3 . 'IH;'T"I:-)
{"r'l-T} l[nﬂ::t"T:L

i=alX) i =alX}

are formulafunctions, if a, b, and f are, and a(x) ':—:b(xﬁ.

Sums and products are required to be bounded to preserve the computationa character of formulas; that is,
formulas can be evaluated by plugging in values for the arguments and carrying out afinite number of
calculations. The reason for the prime on the and 'l is explained later in this chapter.

When forming new formula functions using composition, we supply parentheses when necessary according to
well-established conventions.

Notice that division is not included in the list above; that's too complicated to be uncritically accepted as a
“formulafunction." Even so, the above list is not minimal. It might be fun to find a minimal starting point, but
we won't dwell on that here.

This definition of "formulafunction™ is close to the definition of "elementary function" given in [Cut].
However, the domain of values used in [Cut] is the non-negative integers (asis usual in recursive function

http:// /?xmlid=0-201-91465-4/biblio#bib9
http:// /?xmlid=0-201-91465-4/biblio#bib9

theory). Also, [Cut] requires the bounds on the iterated sum and product to be 0 and x - 1 (wherexisa

variable), and allows the range to be vacuous (in which case the sum is defined as 0 and the product is defined
asl).

In what follows, we show that the class of formulafunctionsis quite extensive, including most of the functions
ordinarily encountered in mathematics. But it doesn't include every function that is easy to define and has an
elementary character.

Our development is slightly encumbered, compared to similar developments in recursive function theory,
because here variables can take on negative values. However, the possibility of avalue's being negative can
often be accommodated by simply squaring some expression that would otherwise appear in the first power.
Our insistence that iterated sums and products not be vacuous is another slight encumbrance.

Here, a"predicate” is simply a 0/1-valued function, whereas in recursive function theory a predicate is atrue/
false-valued function, and every predicate has an associated "characteristic function” that is 0/1-valued. We
associate 1 with true and O with false, asis universally done in programming languages and in computers (in
what their and and or instructions do); in logic and recursive function theory, the association is often the
opposite.

The following are formula functions:

1. a’= aa, a3 = aaa, and so on.
2. The predicate a =b:

(i —h)=

(a=b)y= [T (1-).
i=0

3. (aF®b)=1-(a=b).

4. The predicate a Zb:

[e1 —B)-

(azh)y = ¥Y'(a-b)=1i)
=0

[xi |'J'|: [[er) .'|:

X | (L)
=0

J"l'l'

http:// /?xmlid=0-201-91465-4/biblio#bib9

We can now explain why we do not use the convention that a vacuous iterated sum/product has the value 0/1. If
we did, we would have such shams as

(gt = fr}< -1
fa=b)= % r | and (azb) = []0.

i=10 I =

The comparison predicates are key to everything that follows, and we don't wish to have them based on
anything quite that artificial.

5 (a>b)=(a=b+1).

6. (aSb)=(b=a).

7. (a<b)=(b>a).
8. |a|=(2@=0)-Da
9. max(a, b)=(a=b)(a-b)+b.

10. min(a, b) = (a=b) (b-a) + a.

Now we can fix the iterated sums and products so that they give the conventional and useful result when the
range is vacuous.

bix) s fer T, f:ﬁ]r
Y AL, ¥) = (M(X) 2 a(X)) Y i X).
11, = alk) i=alX)

b(x)y I11.L":I,rrI:.T'I-.rfJ_[7|]P
[1Ai.5) = 1+ B® za@)(-1+ []A,5).
12 f= a.'{.i’} §=alk)

From now on we will use % and I'T without the prime. All functions thus defined are total (defined for al values
of the arguments).

Fl
n! =]'[i

13. r=1

Thisgivesn! = 1 for n <0,

In what follows, P and Q denote predicates.
14. -P(X) = 1- P(X).

15. P(x) & Q) = P()Q(X).

16. P(x) [Q(X) =1-(1-P(x))(1-Q(X)).

17. Pe0) Do) = (P60 - Q602
18. if P(x) thenf(y) elseg(z) = P(x)f(y) + (1- P(x))g(z).

Fl
a = if n =0 then TTa else 0,
19. i=1

This gives, arbitrarily and perhaps incorrectly for afew cases, the result O for n < 0, and the result 1 for
00,

(mE=Vx=n)Plx, V) = ﬁ' Plx, v).
20. £=m

(m=dv=m)P(x,¥) = | - ﬁ (1 =P(x, ¥)).
21. ¥ =N

v isvacuoudly true, 3 isvacuously false.

i f
(m=minx=n)Plx, V) = m+ Z]'[(1 =P V)
22 r'—r.lrlj— [1F

The value of this expression isthe least x in the range mto n such that the predicate is true, or mif the
range is vacuous, or n + 1 if the predicate is fal se throughout the (nonvacuous) range. The operation is
called "bounded minimalization" and it is avery powerful tool for developing new formula functions.
It isasort of functional inverse, asillustrated by the next formula. That minimalization can be done by
asum of products is due to Goodstein [Good].

23 LJ/n] = (0<min k<|u])((k+1)2 > n).

http:// /?xmlid=0-201-91465-4/biblio#bib23

Thisisthe "integer square root" function, which we defineto be 0 for n < 0, just to make it atotal
function.

24, din = (-;n| €Jq n(n = qd).
Thisisthe "d divides n" predicate, according to which 0]0 but —(0|n) for n 0.

25, n+d=if n 20 then (-n Sminq =)0 S3r Syd|- (= qd + r) dse (n Smin q S-n)(-d| + 1
':—:gr 50)(n =qd+r).

Thisisthe conventional truncating form of integer division. For d = 0 it givesaresult of |n| + 1,
arbitrarily.

26. rem(n, d) =n- (n =+ d)d.

Thisisthe conventional remainder function. If rem(n, d) is nonzero, it has the sign of the numerator n.
If d =0, the remainder isn.

27. isprime(n) = n =2 & ~2 S3d S| - 1)(din).

min) = i isprime(i).
28. =1

Number of primes ':—:n.
(p)

29. p, = (1 Smink S20)(p(K) = n).

30. exponent(p, n) = (0 Smin x S|n)-(p*+ 1in).
Thisisthe exponent of agiven prime factor p of n, for n =1,

31. Forn :30.

32. Thenth digit after the decimal point in the decimal expansion of

J2:rem(| 21027], 10).

Thus, the class of formula functionsis quite large. It is limited, though, by the following theorem (at least):

Theorem. If f is a formula function, then there is a constant k such that

ﬂ?:} < 32 N U

wheretherearek 2's.

This can be proved by showing that each application of one of the rules 1-5 (on page 279) preserves the
theorem. For example, if f(x) = ¢ (rule 1), then for some h,

fF) <2274,

where thereare h 2's. Therefore,

B <22 R PN 2,

f(X) = x; (rule 2), f(%) < max(|x,)

because max(|x|, ..., |x,|) = 0 y w1y g

holds with k = 0.

"For - *s0 the theorem

For rule 3, let

fixy 22 A"k ol k| and g(x)=2° bbb K.

I

Then, clearly

[

fAx)+p(x)=<2-2% ™k~ }mux[f:,. k)

il) o

22"k ;nm:-'.l[ﬂ.'pk:j+l.

I
b

Similarly, it can be shown that the theorem holds for f(x, y) = xy.
The proofs that rules 4 and 5 preserve the theorem are a bit tedious but not difficult, and are omitted.

From the theorem, it follows that the function

Equation 4

is not aformulafunction, because for sufficiently large x, Equation (4) exceeds the value of the same
expression with any fixed number k of 2's.

For those interested in recursive function theory, we point out that Equation (4) is primitive recursive.
Furthermore, it is easy to show directly from the definition of primitive recursion that formulafunctions are
primitive recursive. Therefore, the class of formula functionsis a proper subset of the primitive recursive
functions. The interested reader is referred to [Cut].

In summary, this section shows that not only is there aformulain elementary functions for the nth prime, but
also for agood many other functions encountered in mathematics. Furthermore, our "formulafunctions" are not
based on trigono-metric functions, the floor function, absolute value, powers of -1, or even division. The only
sneaky maneuver isto use the fact that the product of alot of numbersisO if any one of themis 0, whichis
used in the formulafor the predicatea="b

It istrue, however, that once you see them, they are not interesting. The quest for "interesting" formulas for
primes should go on. For example, [Rib] cites the amazing theorem of W. H. Mills (1947) that there existsa 6

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq04#ch16eq04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/ch16lev1sec4&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#ch16eq04#ch16eq04
http:// /?xmlid=0-201-91465-4/biblio#bib9
http:// /?xmlid=0-201-91465-4/biblio#bib53

such that the expression

Lo+]

isprime-valued for al n 21. Actual ly, there are an infinite number of such values (e.g., 1.3063778838" and
1.4537508625483"). Furthermore, there is nothing special about the "3"; the theorem istrueif the 3 is replaced

with any integer =3 (for different values of 0). Better yet, the 3 can be replaced with 2 if it istrue that thereis
always a prime between n2 and (n + 1)2, which is almost certainly true, but has never been proved. And
furthermore, ... well, the interested reader is referred to [Rib] and to [Dud] for more fascinating formulas of

this type.

http:// /?xmlid=0-201-91465-4/biblio#bib53
http:// /?xmlid=0-201-91465-4/biblio#bib13

Appendix A. Arithmetic Tables for a 4-Bit Machine

In the tablesin Appendix A, underlining denotes signed overflow.

Table A-1.. Addition

"8 7 [6 F5 4 [3 F2 F1

1 2 B 4 B B 7 B 9 A B € P E F

1 2 B @& B B 7 B @ A B [€ P E F

2 B3 4 B B |7 B P A B [P [E [[0

3 4 [6 7 B © A B [P [E [F [0 [1I

2B 6 7 B ©@ A B [P [E [F [0 II [12

5 ® [7 B © A B [C P [E [[0 1T 12 [13

6 [7 B ©@ A B € P [E [F [0 [II [12 {13 [14

7 B © A B [Db [E [[0 I {12 13 [14 [15

8 9 A B [C DD [E [[0 @I [I2 [I3 [14 [I5 [16

-8 9 A B € [[E [F @10 AI 12 13 @4 (15 [16 [17
=7 A B € D [E [[0 AL 12 I3 [14 [15 [16 [17 [18
6 B [C D [E [[0 [II 12 @3 [I4 [15 [@6 [17 [18 [19
5 C D [E [F [0 [II [12 {13 [@4 (15 [16 [L7 (18 [19 [A
7 D [E [[T0 [T [12 [I3 14 [15 [@6 [17 [18 [19 [IA [IB

The table for subtraction (Table A-2) assumes that the carry bit for a- bisset asit would befora+b +1, so
that carry is equivalent to "not borrow."

Table A-2.. Subtraction (row - column)

"8 7 F6 5 F4 3 F2 FI

0 1 2 8 4 pB o | 8 9 A B € Db [E [

N
|_\
N
H
H
|_\
(@
T
m
O
O
[es)
| >
|
[ele]
\l
o
o1
~
w

4 14 |13 |12 (11 (10 | [E

[w
[@
[ey
b=
[©
[ee
~
o
o

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table02#app01table02

-3 D 1D 1C 1B 1A |19 (18 [1/ |16 |15 {14 (13 |12 |11 (10 [|[E

-1 F 1F IE (1D |1C 1B 1A (19 |18 |1/ {16 (15 |14 |13 [12 (11 |10

For multiplication (Tables A-3 and A-4), overflow means that the result cannot be expressed as a 4-bit quantity.
For signed multiplication (Table A-3), thisis equivalent to the first five bits of the 8-bit result not being all 1's
oral O's.

Table A-3.. Signed Multiplication

8 [7 F6 F5 [F4 F3 [F2 I

0 1 2 3 @4 3} 6 ! 3 9 A B € D [E [

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table03#app01table03
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table04#app01table04
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table03#app01table03

-8 F8 [FO [E8 [E0 B8 DO [C8 [0 [B8 [30 28 20 [18 [10 8
-7 FO [F2 [EB [E4 DD D6 [CE 38 B1 [2A 23 [IC [15 [E |7
-6 FA F4 [EE [E8 [E2 DC D6 [30 RA 24 [1IE [18 [12 [C [6
-5 FB [F6 [F1 [EC E7 [E2 DD 28 23 [IE 19 14 [F A B
-4 FC [F8 [F4 [FO [EC [E8 [E4 20 [IC [18 [14 [10 [C [4
-3 FD FA F7 [F4 [F1 [EE EB [18 [I15 12 F [C 9 6 [
-2 FE [FC [FA |[F8 [F6 [F4 [F2 10 E € A B8 6 {4 R
-1 FF FE [FD [FC FB [FA [F9 8 [/ 6 P @4 [2 1
Table A-4.. Unsigned Multiplication

2 3 4 5 6 7 8 9 A B C D E F
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 §] / 8 ¢) A B C D E F
2 4 6 3 A C E 10 [12 14 [16e [18 [TA [IC [1E
3 § e C F 12 (15 |18 (1B [1E PR1 P24 27 PA 2D
A 3 C 10 14 [18 [1C 0 P4 [R8 [RC B0 PB4 B8 BC
5 A F 14 19 [1E PR3 P28 PD B2 B7 RBC @41 W46 KB
6 C 12 (18 [1E R4 PRA B0 Bo RBC 42 48 UE H4 PBA

E 15 [1C PR3 PRPA Bl B8 PBF 46 @UD H4 BB B2 P9
8 10 (18 RO R8 BO B8 KO ¢48 O P8 PO P8 0 8

DO D A 27 34 41 UE DB 68 > 82 BF PC A9 Bo |C3

Tables A-5 and A-6 are for conventional truncating division. Table A-5 shows aresult of 8 with overflow for

the case of the maximum negative number divided by -1, but on most machines the result in thiscaseis
undefined, or the operation is suppressed.

Table A-5.. Signed Short Division (row + column)

'8 [7 [F6 F5 [4 F3 F2 F1I

o1l 2 83 4 p 6 | 8 © A B [€C D [E [

O - (0O (O [0 0 0 [0 [0 [0 0 0 0 0 0 0 0
1 - 212 0 O 0 0 0 0 [0 0 0 0 0 0 0 F
2 - 2 1 0 0 [0 0 0 [0 0 0 0 0 0 F E
3 8 1 1 0 [0 0 [0 [0 0 0 0 0 F F D
4 - 4 2 1 1 0 0 0 [0 0 0 0 F F E C

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table05#app01table05
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table06#app01table06
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table05#app01table05

6 F 6 B 2 0 0 F F D A

7 F 7B 21 1 F F F D 9
-8 B | B8 |IC [E [E F 1 1 1 4 8
-7 9 | 9 D [E |F F 1 1 1 3 /
-6 A | A D E 0 0 1 1 3 §
-5 B | B E [F [0 0 0 1 2 o
-4 [C | |IC E [F |F 0 0 0 0 2 4
-3 Db F D |F F 0 0 0 0 0 1 3
-2 [E F E [F [0 [0 0 0 0 0 1 2
-1 F F [F [0 [0 [0 0 0 0 0 0 1

Table A-6.. Unsigned Short Division (row + column)

0 1 2 3 4 b 6 / 8 O A B |[C F
0 - 0 O [0 0 0 0 0 0 0O [0 0 0 0
1 - 1 0 0 0 0 O [0 0 0 0 O 0 0
2 - 2 1 0O [0 O [0 0 0 0 O 0 0 0
3 - 3 1 1 0 0 0 0O [0 0 0 0 0 0
A - A 2 1 1 0 O [0 0 0 0 O 0 0
5 - 5 2 1 1 1 0 0O [0 P 0O [0 0 0
§ - § 3 2 1 1 1 O [0 0 0 0 0

! - ! 3 2 1 1 1 1 0 0 0 0 0 0 0 0
S - S 4 2 2 1 1 1 1 0 0 0 0 0 0 0
9 - 9 4 3 2 1 1 1 1 1 0 0 0 0 0 0
A AP 3 2 2 1 1 1 1 1 0 0 0 0 0
B B P 3 2 2 1 1 1 1 1 1 0 0 0 0
C | C b 4 3 2 2 1 1 1 1 1 1 0 0 0
D r D o 4 3 2 2 1 1 1 1 1 1 1 0 0
E F E 4 3 2 2 2 1 1 1 1 1 1 1 0
FF = 3} 3 3 2 2 1 1 1 1 1 1 1 il

Tables A-7 and A-8 give the remainder associated with conventional truncating division. Table A-7 shows a

result of O for the case of the maximum negative number divided by -1, but on most machines the result for this
case is undefined, or the operation is suppressed.

Table A-7.. Remainder for Signed Short Division (row + column)

8 F7 [6 [F5 F4 F3 [F2 F1I

O1 2 334 P b |/ B 9 A B C D E F

http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table07#app01table07
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table08#app01table08
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app01&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app01table07#app01table07

OO0 1T 4 4 4 4 0 1
Ol 2 1 |0 o o 0 1 2
O 0 0 2 1 § 6 1 2 0
Ol 1T [|2 ! 0 2 3 1
-8 OO0 [E O D 0 [F D 0 E
-/ 0 F [FDE 9 0 [E D F
-0 0 00 EF A A 1= E 0
-5 O F E[F [0 B B 0 F E
-4 O 0 [F |0 C C C C 0 F
-3 OF O DD D D D D 0
-2 O 0 E E E E E E E E
-1 O F F |F [F F F F F F
Table A-8.. Remainder for Unsigned Short Division (row + column)
2 3 4 o 6 / 8 9 A B [C D
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 2 2 2 2 2 2 2 2 2 2 2
3 1 0 3 3 3 3 3 3 3 3 3 3
4 0 1 0 4 4 4 4 4 4 4 A al

Appendix B. Newton's Method

To review Newton's method very briefly, we are given a differentiable function f of areal variable x and we
wish to solve the equation f(x) = O for x. Given a current estimate x,, of aroot of f, Newton's method gives us a

better estimate x,, ; 1, under suitable conditions, according to the formula

ﬂ""'..l.'}
f(x,)

"I'.rl 1 = ']'I.Ir -

Here, f'(x;,) isthe derivative of f at x = X,,. The derivation of this formula can be read off the figure below (solve
for X, + 1)-

M)

The method works very well for ssmple, well-behaved functions such as polynomials, provided the first
estimate is quite close. Once an estimate is sufficiently close, the method converges quadratically. That is, if r
is the exact value of the root, and x,, is a sufficiently close estimate, then

|'.'Iu +1 7 .I"| E {'.'Irl - .I"j:_

Thus, the number of digits of accuracy doubles with each iteration (e.g., if
|x, = r| £0.001, then |x,,, -+ = 0.000001).

If the first estimate is way off, then the iterations may converge very slowly, may diverge to infinity, may
converge to aroot other than the one closest to the first estimate, or may loop among certain values indefinitely.

This discussion has been quite vague because of phrases like "suitable conditions,” "well-behaved," and
"sufficiently close." For a more precise discussion, consult amost any first-year cal culus textbook.

In spite of the caveats surrounding this method, it is occasionally useful in the domain of integers. To see
whether or not the method applies to a particular function, you have to work it out, such asis donein Section

11-1, "Integer Square Root," on page 203.

Table B-1 gives afew iterative formulas derived from Newton's method, for computing certain numbers. The

first column shows the number it is desired to compute. The second column shows a function that has that
number as aroot. The third column shows the right-hand side of Newton's formula corresponding to that
function.

It is not always easy, incidentally, to find a good function to use. There are, of course, many functions that have
the desired quantity as aroot, and only afew of them lead to a useful iterative formula. Usually, the function to

use isasort of inverse of the desired computation. For example, to find J"-{ use f(x) = x2 - a; to find log,a use f

[1]
(X) =2X- a, and so on.

(I Newton's method for the special case of the square root function was known to Babylonians about 4,000 years ago.

Table B-1.. Newton's Method for Computing Certain Numbers

Quantity to Be Computed Function Iterative Formula

2.
Ja x°-a 1[_[_[_g]

2 X,
3 X3 - a I i
a -[E.T” + _1.]
: Xn
I)(2_ a 1",1;')
— ;{3 —ax;)
Wa 2

>
[N
Q
3
N
£

o

http:// /?xmlid=0-201-91465-4/ch11lev1sec1#ch11lev1sec1
http:// /?xmlid=0-201-91465-4/ch11lev1sec1#ch11lev1sec1
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app02&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app02table01#app02table01
http:// /JVXSL.asp?x=1&mode=section&sortKey=insertDate&sortOrder=desc&view=&xmlid=0-201-91465-4/app02&open=true&title=New%20This%20Week&catid=&s=1&b=1&f=1&t=1&c=1&u=1#app02footnote01#app02footnote01

log,a 2%-a _ I (a)

The iterative formulafor log, a converges (to log, a) even if the multiplier 1/In2 is altered somewhat (for
example, to 1, or to 2). However, it then converges more slowly. A value of 3/2 or 23/16 might be useful in
some applications (1/In2 ="'-*'1.4427).

Bibliography

[AES] Advanced Encryption Standard (AES), Nationa Institute of Standards and Technology, FIPS PUB 197
(November 2001). Available at http://csrc.nist.gov/publications/fips/fipsl97/fips-197.pdf.

[Alv] Alverson, Robert. "Integer Division Using Reciprocals.” In Proceedings | EEE 10th Symposium on
Computer Arithmetic, June 26-28, 1991, Grenoble, France, 186-190.

[Ausl] Found in a REXX interpreter subroutine written by Marc A. Auslander.
[Aus2] Auslander, Marc A. Private communication.

[Bern] Bernstein, Robert. "Multiplication by Integer Constants." Software—Practice and Experience 16, 7
(July 1986), 641-652.

[BGN] Burks, Arthur W., Goldstine, Herman H., and von Neumann, John. "Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument, Second Edition™ (1947). In Papers of John von
Neumann on Computing and Computing Theory, Volume 12 in the Charles Babbage Institute Reprint Series
for the History of Computing, MIT Press, 1987.

[CJS] Stephenson, Christopher J. Private communication.
[Cohen] These rules were pointed out by Norman H. Cohen.

[Cut] Cutland, Nigel J. Computability: An Introduction to Recursive Function Theory. Cambridge University
Press, 1980.

[CWG] Hoxey, Karim, Hay, and Warren (Editors). The Power PC Compiler Writer's Guide. Warthman
Associates, 1996.

[DES] Data Encryption Sandard (DES), National Institute of Standards and Technology, FIPS PUB 46-2
(December 1993). Available at http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[Dewd] Dewdney, A. K. The Turing Omnibus. Computer Science Press, 1989.

[Dud] Dudley, Underwood. "History of a Formula for Primes." American Mathematics Monthly 76 (1969), 23-
28.

[EL] Ercegovac, Milo D. and Lang, Tomas. Division and Square Root: Digit-Recurrence Algorithms and
Implementations. Kluwer Academic Publishers, 1994.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.itl.nist.gov/fipspubs/fip46-2.htm

[Gard] Gardner, Martin. *Mathematical Games" column in Scientific American, 227 2 (August 1972), 106-109.

[GGS] Gregoire, Dennis G., Groves, Randall D., and Schmookler, Martin S. Sngle Cycle Merge/Logic Unit,
US Patent No. 4,903,228, February 20, 1990.

[GK] Granlund, Torbj6rn and Kenner, Richard. "Eliminating Branches Using a Superoptimizer and the GNU C
Compiler." In Proceedings of the 5th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), July 1992, 341-352.

[GKP] Graham, Ronald L., Knuth, Donald E., and Patashnik, Oren. Concrete Mathematics. A Foundation for
Computer Science, Second Edition. Addison-Wesley, 1994.

[GLS1] Steele, Guy L., Jr. Private communication.

[GLS2] Steele, Guy L., Jr. "Arithmetic Shifting Considered Harmful." Al Memo 378, MIT Artificia
Intelligence Laboratory (September 1976); also in SSGPLAN Notices 12, 11 (November 1977), 61-69.

[GM] Granlund, Torbjorn and Montgomery, Peter L. "Division by Invariant Integers Using Multiplication.” In
Proceedings of the ACM SIGPLAN '94 Conference on Programming Language Design and I mplementation
(PLDI), August 1994, 61-72.

[Gold] The second expression is due to Richard Goldberg.
[Good] Goodstein, Prof. R. L. "Formulae for Primes." The Mathematical Gazette 51 (1967), 35-36.
[GSO] Found by the GNU Superoptimizer.

[HAK] Beeler, M., Gosper, R. W., and Schroeppel, R. HAKMEM, MIT Artificial Intelligence Laboratory AIM
239 February 1972.

[Hayl] Hay, R. W. Private communication.
[Hay2] The first expression was found in a compiler subroutine written by R. W. Hay..

[Hil] Hilbert, David. "Ueber die stetige Abbildung einer Linie auf ein Flachenstiick.” Mathematischen Annalen
38 (1891), 459-460.

[Hop] Hopkins, Martin E. Private communication..

[HS] Hillis, W. Daniel and Steele, Guy L., Jr. "Data Parallel Algorithms." Comm. ACM 29, 12 (December
1986) 1170-1183.

[H& P] Hennessy, John L. and Patterson, David A. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, 1990.
[H& S] Harbison, Samuel P. and Steele, Guy L., Jr. C: A Reference Manual, Fourth Edition. Prentice-Hall, 1995.

[H& W] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, Fourth Edition. Oxford
University Press, 1960.

[IBM] From an IBM programming course, 1961.

[Irving] Irvine, M. M. "Early Digital Computers at Bell Telephone Laboratories.” |IEEE Annals of the History
of Computing 23, 3 (July-September 2001), 22-42.

[JVN] von Neumann, John. "First Draft of a Report on the EDVAC." In Papers of John von Neumann on
Computing and Computing Theory, Volume 12 in the Charles Babbage Institute Reprint Series for the History
of Computing, MIT Press, 1987.

[Ken] Found ina GNU C compiler for the RS/6000 that was ported by Richard Kenner. He attributes thisto a
1992 PL DI conference paper by him and Torbjérn Granlund.

[Knul] Knuth, Donald E. The Art of Computer Programming, Volume 1, Third Edition: Fundamental
Algorithms. Addison-Wesley, 1997.

[Knu2] Knuth, Donald E. The Art of Computer Programming, Volume 2, Third Edition: Seminumerical
Algorithms. Addison-Wesley, 1998.

[Knu3] Theidea of using a negative integer as the base of a number system for arithmetic has been
independently discovered by many people. The earliest reference given by Knuth isto Vittorio Grinwald in
1885. Knuth himself submitted a paper on the subject in 1955 to a " science talent search” for high-school
seniors. For other early references, see Knuth, Volume 2.

[KRS] Kruskal, Clyde P., Rudolph, Larry, and Snir, Marc. "The Power of Parallel Prefix." |IEEE Transactions
on Computers C-34, 10 (October 1985), 965-968.

[Lamp] Lamport, Ledlie. "Multiple Byte Processing with Full-Word Instructions." Communications of the ACM
18, 8 (August 1975), 471-475.

[LSY] Lee, Ruby B., Shi, Zhijie, and Y ang, Xiao. "Efficient Permutation Instructions for Fast Software
Cryptography."” IEEE Micro 21, 6 (November/December 2001), 56-69.

[L&S] Lam, Warren M. and Shapiro, Jerome M. "A Class of Fast Algorithms for the Peano-Hilbert Space-
Filling Curve." In Proceedings ICIP 94, 1 (1994), 638-641.

[MD] Denneau, Monty. Private communication.

[MIPS] Kane, Gerry and Heinrich, Joe. MIPS RISC Architecture. Prentice-Hall, 1992.
[MM] Morton, Mike. "Quibbles & Bits." Computer Language 7, 12 (December 1990), 45-55.

[MMIX] Part of aforthcoming edition of The Art of Computer Programming. Available at http://www-cs-
faculty.stanford.edu/~knuth/taocp.htmil.

[NZM] Niven, Ivan, Zuckerman, Herbert S., and Montgomery, Hugh L. An Introduction to the Theory of
Numbers, Fifth Edition. John Wiley & Sons, Inc., 1991.

[PB] Purdom, Paul Walton Jr., and Brown, Cynthia A. The Analysis of Algorithms. Holt, Rinehart and Winston,
1985.

[PHO] Oden, Peter H. Private communication.
[PL8] | learned thistrick from the PL.8 compiler.
[Rib] Ribenboim, Paulo. The Little Book of Big Primes. Springer-Verlag, 1991.

[RND] Reingold, Edward M., Nievergelt, Jurg, and Deo, Narsingh. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, 1977.

[Sagan] Sagan, Hans. Space-Filling Curves. Springer-Verlag, 1994. A wonderful book, thoroughly
recommended to anyone even dlightly interested in the subject.

[Shep] Shepherd, Arvin D. Private communication.
[Stall] Stallman, Richard M. Using and Porting GNU CC. Free Software Foundation, 1998.

[Voor] Voorhies, Douglas. " Space-Filling Curves and a Measure of Coherence." Graphics Gemsll, AP
Professional (1991).

[War] Warren, H. S., Jr. "Functions Realizable with Word-Parallel Logical and Two's-Complement Addition
Instructions." Communications of the ACM 20, 6 (June 1977), 439-441.

[Weg] The earliest reference to thisthat | know of is: Wegner, P. A. "A Tech-nique for Counting Onesin a
Binary Computer." Communications of the ACM 3, 5 (May 1960), 322.

[Wells| Wells, David. The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, 1997.

[Will] Willans, C. P. "On Formulae for the nth Prime Number." The Mathematical Gazette 48 (1964), 413-415.

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

[Wor] Wormell, C. P. "Formulae for Primes." The Mathematical Gazette 51 (1967), 36-38.

	0201914654
	Copyright
	Foreword
	Preface
	Acknowledgments
	Chapter 1. Introduction
	1-1 Notation
	1-2 Instruction Set and Execution Time Model

	Chapter 2. Basics
	2-1 Manipulating Rightmost Bits
	2-2 Addition Combined with Logical Operations
	2-3 Inequalities among Logical and Arithmetic Expressions
	2-4 Absolute Value Function
	2-5 Sign Extension
	2-6 Shift Right Signed from Unsigned
	2-7 Sign Function
	2-8 Three-Valued Compare Function
	2-9 Transfer of Sign
	2-10 Decoding a "Zero Means 2**n" Field
	2-11 Comparison Predicates
	2-12 Overflow Detection
	2-13 Condition Code Result of Add, Subtract, and Multiply
	2-14 Rotate Shifts
	2-15 Double-Length Add/Subtract
	2-16 Double-Length Shifts
	2-17 Multibyte Add, Subtract, Absolute Value
	2-18 Doz, Max, Min
	2-19 Exchanging Registers
	2-20 Alternating among Two or More Values

	Chapter 3. Power-of-2 Boundaries
	3-1 Rounding Up/Down to a Multiple of a Known Power of 2
	3-2 Rounding Up/Down to the Next Power of 2
	3-3 Detecting a Power-of-2 Boundary Crossing

	Chapter 4. Arithmetic Bounds
	4-1 Checking Bounds of Integers
	4-2 Propagating Bounds through Add's and Subtract's
	4-3 Propagating Bounds through Logical Operations

	Chapter 5. Counting Bits
	5-1 Counting 1-Bits
	5-2 Parity
	5-3 Counting Leading 0's
	5-4 Counting Trailing 0's

	Chapter 6. Searching Words
	6-1 Find First 0-Byte
	6-2 Find First String of 1-Bits of a Given Length

	Chapter 7. Rearranging Bits and Bytes
	7-1 Reversing Bits and Bytes
	7-2 Shuffling Bits
	7-3 Transposing a Bit Matrix
	7- 4 Compress, or Generalized Extract
	7-5 General Permutations, Sheep and Goats Operation
	7-6 Rearrangements and Index Transformations

	Chapter 8. Multiplication
	8-1 Multiword Multiplication
	8-2 High-Order Half of 64-Bit Product
	8-3 High-Order Product Signed from/to Unsigned
	8-4 Multiplication by Constants

	Chapter 9. Integer Division
	9-1 Preliminaries
	9-2 Multiword Division
	9-3 Unsigned Short Division from Signed Division
	9-4 Unsigned Long Division

	Chapter 10. Integer Division by Constants
	10-1 Signed Division by a Known Power of 2
	10-2 Signed Remainder from Division by a Known Power of 2
	10-3 Signed Division and Remainder by Non-Powers of 2
	10-4 Signed Division by Divisors 2
	10-5 Signed Division by Divisors -2
	10-6 Incorporation into a Compiler
	10-7 Miscellaneous Topics
	10-8 Unsigned Division
	10-9 Unsigned Division by Divisors 1
	10-10 Incorporation into a Compiler (Unsigned)
	10-11 Miscellaneous Topics (Unsigned)
	10-12 Applicability to Modulus and Floor Division
	10-13 Similar Methods
	10-14 Sample Magic Numbers
	10-15 Exact Division by Constants
	10-16 Test for Zero Remainder after Division by a Constant

	Chapter 11. Some Elementary Functions
	11-1 Integer Square Root
	11-2 Integer Cube Root
	11-3 Integer Exponentiation
	11-4 Integer Logarithm

	Chapter 12. Unusual Bases for Number Systems
	12-1 Base -2
	12-2 Base -1 + i
	12-3 Other Bases
	12- 4 What Is the Most Efficient Base?

	Chapter 13. Gray Code
	13-1 Gray Code
	13-2 Incrementing a Gray-Coded Integer
	13-3 Negabinary Gray Code
	13-4 Brief History and Applications

	Chapter 14. Hilbert's Curve
	14-1 A Recursive Algorithm for Generating the Hilbert Curve
	14-2 Coordinates from Distance along the Hilbert Curve
	14-3 Distance from Coordinates on the Hilbert Curve
	14-4 Incrementing the Coordinates on the Hilbert Curve
	14-5 Non-recursive Generating Algorithms
	14-6 Other Space-Filling Curves
	14-7 Applications

	Chapter 15. Floating-Point
	15-1 IEEE Format
	15-2 Comparing Floating-Point Numbers Using Integer Operations
	15-3 The Distribution of Leading Digits
	15-4 Table of Miscellaneous Values

	Chapter 16. Formulas for Primes
	16-1 Introduction
	16-2 Willans's Formulas
	16-3 Wormell's Formula
	16-4 Formulas for Other Difficult Functions

	Appendix A. Arithmetic Tables for a 4-Bit Machine
	Appendix B. Newton's Method
	Bibliography

